该文基于对菲涅尔定向装置的研究,搭建其集热性能测试实验平台,并采用TracePro光学模拟软件,建立菲涅尔定向光输运装置的光学模型。在进行模型验证后,模拟分析跟踪误差和安装误差对光学效率的影响。研究结果表明:俯仰角、旋转角的跟踪误差会导致菲涅尔定向光输运装置光学效率的降低,并且俯仰电机误差范围应控制在±0.1°,方位电机误差范围应控制在±0.5°;当菲涅尔定向光输运装置中定向光输运器抛物反射面的焦点与菲涅尔透镜的聚光焦点存在安装误差时,菲涅尔定向光输运装置光学效率普遍下降,最大偏移量不宜超过0.1。但当偏移量不超过0.5时,将定向光输运器向下侧偏移或将菲涅尔透镜向上偏移,有利于提高菲涅尔定向光输运装置(LTF-SC)光学效率。该研究结果为菲涅尔定向光输运装置和菲涅尔中央接收式太阳能高温集热系统领域的研究和应用提供参考。
Abstract
This paper built an experimental platform of the Fresnel directional light-transmitting device and carried out the research of its heat collection performance. The topic model of the Fresnel directional light-transmitting device was established by using theTracePro optical simulation software to establish the optical model of the Fresnel directional light-transmitting device. After model validation, the effects of tracking error and installation error on optical efficiency were simulated and analyzed. The research results show that the tracking errors of the pitch angle and rotation angle will lead to the reduction of the optical efficiency of the Fresnel directional light transmission device. The error range of the pitch motor should be controlled within ±0.1°, and the error range of the azimuth motor should be controlled within ±0.5°. When there is an installation error between the focal point of the parabolic reflection surface of the directional light transmitter and the focus of the Fresnel lens, the optical efficiency of the Fresnel directional light transmission device generally decreases, and the maximum offset should not exceed 0.1. However, when the offset does not exceed 0.5, the directional light transmitter is shifted downward or the Fresnel lens is shifted upward, which is beneficial to improve the optical efficiency of the orientated light transmitting Fresnel lens solar concentrator (LTF-SC). The results of this study provide a reference for the research and application of the Fresnel directional light transmission device and the Fresnel central receiving high temperature heat collection system.
关键词
太阳能 /
光学性能 /
数值模拟 /
跟踪误差 /
定向光输运
Key words
solar energy /
optical properties /
numerical simulation /
tracking error /
orientated light transmitting
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] HE Y L, WANG K, QIU Y, et al.Review of the solar flux distribution in concentrated solar power: non-uniform features, challenges, and solutions[J]. Applied thermal engineering, 2019, 149: 448-474.
[2] 周炫. 菲涅尔二次反射塔式腔体太阳能集热器集热性能研究[D]. 上海: 上海交通大学, 2015.
ZHOU X.Experimental and theoretical investigation on the performance of a novel beam down system with Fresnel heliostats and cavity receiver[D]. Shanghai: Shanghai Jiao Tong University, 2015.
[3] 陈木生, 黄金, 陈泽雄, 等. 菲涅尔定向传光装置仿真及其光学特性分析[J]. 中南大学学报(自然科学版), 2021, 52(1): 176-188.
CHEN M S, HUANG J, CHEN Z X, et al.Simulation and optical characteristics analysis of orientated light transmitting Fresnel concentrator[J]. Journal of Central South University(natural science edition), 2021, 52(1): 176-188.
[4] 卢梓健, 黄金, 胡艳鑫, 等. 滑移式线性菲涅尔太阳能集热器的设计及实验研究[J]. 广东工业大学学报, 2019, 36(5): 86-93.
LU Z J, HUANG J, HU Y X, et al.Design and experimental study of sliding linear Fresnel solar collector[J]. Journal of Guangdong University of Technology, 2019, 36(5): 86-93.
[5] 王革, 刘方舟, 郑宏飞, 等. 多曲面聚光免跟踪式太阳能空气取水器的实验研究[J]. 太阳能学报, 2021, 42(7): 257-261.
WANG G, LIU F Z, ZHENG H F, et al.Experimental study on multi-surface concentrating and tracing-free solar air water intake device[J]. Acta energiae solaris sinica, 2021, 42(7): 257-261.
[6] BAHRAMI A, OKOYE C O, ATIKOL U.The effect of latitude on the performance of different solar trackers in Europe and Africa[J]. Applied energy, 2016, 177: 896-906.
[7] 朱永强, 刘家豪, 杨晓华, 等. 一种新型单轴太阳跟踪方式[J]. 太阳能学报, 2021, 42(3): 347-352.
ZHU Y Q, LIU J H, YANG X H, et al.A novel single-axis solar tracking system[J]. Acta energiae solaris sinica, 2021, 42(3): 347-352.
[8] 王金平, 王军, 张耀明, 等. 槽式太阳能聚光器跟踪系统运行特性分析[J]. 太阳能学报, 2016, 37(12): 3125-3131.
WANG J P, WANG J, ZHANG Y M, et al.Analysis of operating characteristics for tracking system of parabolic trough solar collector[J]. Acta energiae solaris sinica, 2016, 37(12): 3125-3131.
[9] MA X L, ZHENG H F, CHEN Z L.An investigation on a compound cylindrical solar concentrator (CCSC)[J]. Applied thermal engineering, 2017, 120: 719-727.
[10] 王海, 黄金, 胡艳鑫, 等. 极轴式定焦点菲涅尔聚光器设计及焦斑位置偏差研究[J]. 太阳能学报, 2019, 40(3): 782-790.
WANG H, HUANG J, HU Y X, et al.Design of fixed-focus Fresnel lens solar concentrator using polar tracking and study on focal spot position deviation[J]. Acta energiae solaris sinica, 2019, 40(3): 782-790.
[11] BURHAN M, OH S J, CHUA K J E, et al. Double lens collimator solar feedback sensor and master slave configuration: development of compact and low cost two axis solar tracking system for CPV applications[J]. Solar energy, 2016, 137: 352-363.
[12] SUN J, WANG R L, HONG H, et al.An optimized tracking strategy for small-scale double-axis parabolic trough collector[J]. Applied thermal engineering, 2017, 112: 1408-1420.
[13] COSBY R M.The linear Fresnel lens solar concentrator: Transverse tracking error effects[C]//Proceedings of the Annual Meeting-American Section of the International Solar Energy Society. Orlando, USA, 1977.
[14] 马军. 线性菲涅尔式太阳能聚光系统的优化设计及性能研究[D]. 兰州: 兰州交通大学, 2020.
MA J.Optimization design and performance research of linear Fresnel solar concentrating system[D]. Lanzhou: Lanzhou Jiaotong University, 2020.
[15] MICHALSKY J J.The Astronomical Almanac’s algorithm for approximate solar position(1950-2050)[J]. Solar energy, 1988, 40(3): 227-235.
基金
国家自然科学基金(52006040); 广东省燃料电池技术重点实验室开放基金(FC202202)