基于自然风非定常性,结合某S翼型水平轴风力机实际运行条件拟合出3种动态入流函数,建立不同入流下的非稳态计算模型,研究动态入流对尾迹气动噪声和叶片压力脉动的影响。结果表明:各动态入流下各倍频声压级均高于恒定入流,大小规律表现为:扰动入流>渐变入流>阵风入流>恒定入流;动态入流对声压级的敏感性随倍频阶数增大而增强;沿轴向动态入流与恒定入流声压级差值逐渐增大;阵风入流、渐变入流和扰动入流的压力脉动峰值依次增大,这也是声压级产生相同大小规律的原因。通过分析入流情况对叶片声场分布和变化规律影响研究,对未来大型叶片噪声评估和降噪设计提供一定的理论和参考依据。
Abstract
Based on the non-stationary characteristic of natural wind, three kinds of dynamic inflow functions are fitted based on the actual operating conditions of an S-wing horizontal axis wind turbine, and the non-stationary calculation models under different inflow are established to study the effects of dynamic inflow on the wake aerodynamic noise and blade pressure pulsation. The results show that: the sound pressure level at each octave is higher than that at constant inflow under dynamic inflow, and the magnitude is as follows: disturbance inflow >gradient inflow > gust inflow > constant inflow; the sensitivity of dynamic inflow to sound pressure level increases with the increase of octave order; the sensitivity of dynamic inflow to sound pressure level increases with the increase of octave order. The sound pressure level difference between dynamic inflow and constant inflow along the axial direction gradually increases; the peak pressure pulsation of gust inflow, gradual inflow and disturbance inflow increases in turn, which is also the reason for the same size law of sound pressure level. By analyzing the influence of the inflow condition on the blade sound field distribution and change law, it provides some theoretical and reference basis for future large blade noise assessment and noise reduction design.
关键词
风力机 /
噪声测量 /
涡量 /
压力脉动 /
动态入流
Key words
wind turbines /
acoustic noise measurement /
vorticity /
pressure pulsation /
dynamic inflow
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GUTIERREZ W, ARAYA G, KILIYANPILAKKIL P, et al.Structural impact assessment of low level jets over wind turbines[J]. Journal of renewable and sustainable energy, 2016, 8(2): 1-15.
[2] IANNACE G, CIABURRO G, TREMATERRA A.Wind turbine noise prediction using random forest regression[J]. Machines, 2019, 7(4): 69.
[3] SON E, LEE G S, LEE J, et al.1.5 MW wind turbine noise measurement and analysis of low-frequency noise[J]. New & renewable energy, 2018, 14(4): 4-13.
[4] BARLAS E, ZHU W J, SHEN W Z, et al.Consistent modelling of wind turbine noise propagation from source to receiver[J]. The journal of the Acoustical Society of America, 2017, 142(5): 3297.
[5] DAI Y J, LI B H.A numerical study of the acoustic radiation characteristics of the aerodynamic noise in the near-wake region of a wind turbine[J]. Results in physics, 2019, 15: 102782.
[6] GHASEMIAN M, NEJAT A.Aerodynamic noise prediction of a horizontal axis wind turbine using improved delayed detached eddy simulation and acoustic analogy[J]. Energy conversion and management, 2015, 99: 210-220.
[7] LEE S, LEE S.Numerical and experimental study of aerodynamic noise by a small wind turbine[J]. Renewable energy, 2014, 65: 108-112.
[8] 张兆德, 徐超. 基于CFD的二维风力机翼型噪声分析[J]. 太阳能学报, 2016, 37(9): 2180-2186.
ZHANG Z D, XU C.Noise analysis of two-dimensional wind turbine airfoil based on CFD[J]. Acta energiae solaris sinica, 2016, 37(9): 2180-2186.
[9] 薛伟诚, 杨兵, 贾少红, 等. 基于DAMAS算法的气动噪声定位研究[J]. 工程热物理学报, 2015, 36(10): 2142-2145.
XUE W C, YANG B, JIA S H, et al.Aeroacoustic source localization based on DAMAS algorithm[J]. Journal of engineering thermophysics, 2015, 36(10): 2142-2145.
[10] 曹亮, 杨鹏飞, 王怡星, 等. 柔性薄板翼流固耦合振动噪声风洞试验研究[J]. 中国科学: 技术科学, 2019, 49(7): 815-824.
CAO L, YANG P F, WANG Y X, et al.Wind tunnel experimental study on noise of flexible thin plate wing with fluid-solid interaction effects[J]. Scientia sinica (technologica), 2019, 49(7): 815-824.
基金
国家自然科学基金(51966014); 内蒙古自治区科技计划项目(2021GG0436); 内蒙古自治区高等学校科学研究项目(NJZZ21067); 内蒙古机电职业技术学院科学研究项目(NJDZR2201)