适用于纯新能源基地送出的混合型直流输电方案

刘文韬, 张哲任, 徐政

太阳能学报 ›› 2023, Vol. 44 ›› Issue (12) : 533-543.

PDF(2504 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2504 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (12) : 533-543. DOI: 10.19912/j.0254-0096.tynxb.2022-1323

适用于纯新能源基地送出的混合型直流输电方案

  • 刘文韬, 张哲任, 徐政
作者信息 +

HYBRID HVDC TRANSMISSION SCHEME OF PURE RENEWABLE ENERGY BASE

  • Liu Wentao, Zhang Zheren, Xu Zheng
Author information +
文章历史 +

摘要

为实现光伏、风电等新能源远距离输送,提出一种适用于大规模新能源远距离外送的混合型直流输电系统。首先,介绍混合型直流输电系统的拓扑结构和数学模型,整流站采用半桥子模块型模块化多电平换流器(MMC)与电网换相换流器(LCC)串联,逆变站采用混合型MMC,该系统能为新能源基地提供电压支撑并且实现直流故障的自清除;然后,提出系统的稳态控制方式与交直流故障下的控制策略;最后,在PSCAD/EMTDC中对送端功率波动、送端交流故障、受端交流故障、直流线路故障等4个典型场景进行仿真分析,验证了控制策略的有效性。

Abstract

In order to realize the long-distance transmission of sustainable energy sources such as photovoltaic and wind power, a hybrid HVDC transmission scheme for large-scale renewable energy sources long-distance transmission is proposed. Firstly, the topology structure and mathematical model of the hybrid HVDC transmission system are introduced. The rectifier station adopts half-bridge modular multilevel converters and line commutated converter in series, and the inverter station adopts hybrid modular multilevel converters, which is capable of providing voltage support for the renewable energy bases and realize self-clearance of DC faults. Then the steady-state control method of the system and the control strategy under AC and DC faults are further proposed. Finally, based on PSCAD/EMTDC, an electromagnetic transient simulation model is built. The effectiveness of the control strategy is verified by four typical scenarios, which include power fluctuation at the sending-end, AC fault at the sending-end, AC fault at the receiving end, and DC line fault.

关键词

高压直流输电系统 / 电力系统 / 可再生能源 / 电网换相换流器 / 模块化多电平换流器 / 故障穿越

Key words

HVDC power transmission / electrical power system / renewable energy resource / line commutated converter / modular multilevel converter / fault ride-through strategy

引用本文

导出引用
刘文韬, 张哲任, 徐政. 适用于纯新能源基地送出的混合型直流输电方案[J]. 太阳能学报. 2023, 44(12): 533-543 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1323
Liu Wentao, Zhang Zheren, Xu Zheng. HYBRID HVDC TRANSMISSION SCHEME OF PURE RENEWABLE ENERGY BASE[J]. Acta Energiae Solaris Sinica. 2023, 44(12): 533-543 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1323
中图分类号: TM722   

参考文献

[1] 新华网. 习近平在第七十五届联合国大会一般性辩论上的讲话(全文)[EB/OL]. https://baijiahao.baidu.com/s?id=1678595656103445127&wfr=spider&for=pc.
Xinhuanet. Speech by Xi Jinping at the General Debate of the 75th United Nations General Assembly (full text) [EB/OL]. https://baijiahao.baidu.com/s?id=167859565 6103445127&wfr=spider&for=pc.
[2] 中国经济网. 中国能源发展的两个关键: 煤企转型和新能源开发[EB/OL].http://finance.china.com.cn/roll/20150915/3342321.shtml.
China Economic Net.Two keys to China’s energy development: coal enterprise transformation and new energy development[EB/OL]. http://finance.china.com.cn/roll/20150915/3342321.shtml.
[3] 国家发展改革委, 国家能源局. 能源生产和消费革命战略(2016—2030)[EB/OL]. http://www.gov.cn /xinwen/2017-04/25/content_5230568.htm.
National Development and Reform Commission, National Energy Administration. Energy production and consumption revolution strategy (2016-2030) [EB/OL]. http://www.gov.cn/xinwen/2017-04/25/content_5230568.htm.
[4] 国家发展改革委, 国家能源局. “十四五”可再生能源发展规划[EB/OL].https://www.ndrc.gov.cn /xxgk/zcfb/ghwb/202206/t20220601_1326719.html?code=&state=123.
National Development and Reform Commission, National Energy Administration. Renewable energy development plan for the 14th Five-Year Plan[EB/OL].https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202206/t20220601_1326719.html?code=&state=123.
[5] KALAIR A, ABAS N, KHAN N.Comparative study of HVAC and HVDC transmission systems[J]. Renewable and sustainable energy reviews, 2016, 59: 1653-1675.
[6] 浙江大学发电教研组, 直流输电科研组. 直流输电[M]. 北京: 电力工业出版社, 1982: 25-34.
DC Transmission Research Group, Power Generation Teaching and Research Group, Zhejiang University. Direct current transmission[M]. Beijing: Electric Power Industry Press, 1982: 25-34.
[7] 郭小江, 马世英, 申洪, 等. 大规模风电直流外送方案与系统稳定控制策略[J]. 电力系统自动化, 2012, 36(15): 107-115.
GUO X J, MA S Y, SHEN H, et al.HVDC grid connection schemes and system stability control strategies for large-scale wind power[J]. Automation of electric power systems, 2012, 36(15): 107-115.
[8] 徐式蕴, 吴萍, 赵兵, 等. 提升风火打捆哈郑特高压直流风电消纳能力的安全稳定控制措施研究[J]. 电工技术学报, 2015, 30(13): 92-99.
XU S Y, WU P, ZHAO B, et al.Study on the security and stability control strategy enhancing the wind power consuming ability of the wind-thermal power combining Hazheng UHVDC system[J]. Transactions of China Electrotechnical Society, 2015, 30(13): 92-99.
[9] 王智冬, 刘连光, 刘自发, 等. 基于量子粒子群算法的风火打捆容量及直流落点优化配置[J]. 中国电机工程学报, 2014, 34(13): 2055-2062.
WANG Z D, LIU L G, LIU Z F, et al.Optimal configuration of wind & coal power capacity and DC placement based on quantum PSO algorithm[J]. Proceedings of the CSEE, 2014, 34(13): 2055-2062.
[10] 赵云灏, 夏懿, 周勤勇, 等. 风火打捆直流外送系统的直流系统无功补偿装置协调控制策略及配置方案[J]. 电网技术, 2016, 40(7): 2081-2086.
ZHAO Y H, XIA Y, ZHOU Q Y, et al.Coordinated control strategy and configuration scheme of RPCD of DC system for wind-thermal-bundled power transmission[J]. Power system technology, 2016, 40(7): 2081-2086.
[11] 李生福, 张爱玲, 李少华, 等. “风火打捆”交直流外送系统的暂态稳定控制研究[J]. 电力系统保护与控制, 2015, 43(1): 108-114.
LI S F, ZHANG A L, LI S H, et al.Study on transient stability control for wind-thermal-bundled power transmitted by AC/DC system[J]. Power system protection and control, 2015, 43(1): 108-114.
[12] 徐政. 柔性直流输电[M]. 第2版. 北京: 机械工业出版社, 2016: 7-9.
XU Z.Voltage source converter based hvdc power transmission systems[M]. 2nd Edition. Beijing: China Machine Press, 2016: 7-9.
[13] 刘天琪, 陶艳, 李保宏. 风电场经MMC-MTDC系统并网的几个关键问题[J]. 电网技术, 2017, 41(10): 3251-3260.
LIU T Q, TAO Y, LI B H.Critical problems of wind farm integration via MMC-MTDC system[J]. Power system technology, 2017, 41(10): 3251-3260.
[14] 吴林林, 孙雅旻, 刘海涛, 等. 经柔性直流并网的大规模新能源集群有功控制技术研究[J]. 全球能源互联网, 2020, 3(2): 125-131.
WU L L, SUN Y M, LIU H T, et al.Active power control technology of large-scale renewable energy cluster integrated by VSC-HVDC[J]. Journal of global energy interconnection, 2020, 3(2): 125-131.
[15] 董桓锋, 唐庚, 侯俊贤, 等. 海上风电接入多端柔性直流输电系统中换流站退出运行时直流功率再分配策略[J]. 电网技术, 2017, 41(5): 1398-1406.
DONG H F, TANG G, HOU J X, et al.Optimized power redistribution of VSC-MTDC transmissions with offshore wind farms integrated after onshore converter outage[J]. Power system technology, 2017, 41(5): 1398-1406.
[16] 刘卫东, 李奇南, 王轩, 等. 大规模海上风电柔性直流输电技术应用现状和展望[J]. 中国电力, 2020, 53(7): 55-71.
LIU W D, LI Q N, WANG X, et al.Application status and prospect of VSC-HVDC technology for large-scale offshore wind farms[J]. Electric power, 2020, 53(7): 55-71.
[17] 薛英林, 徐政, 张哲任, 等. 采用不同子模块的MMC-HVDC阀损耗通用计算方法[J]. 电力自动化设备, 2015, 35(1): 20-29.
XUE Y L, XU Z, ZHANG Z R, et al.General method of valve loss calculation for MMC-HVDC with different submodules[J]. Electric power automation equipment, 2015, 35(1): 20-29.
[18] 郭春义, 赵成勇, 彭茂兰, 等. 一种具有直流故障穿越能力的混合直流输电系统[J]. 中国电机工程学报, 2015, 35(17): 4345-4352.
GUO C Y, ZHAO C Y, PENG M L, et al.A hybrid HVDC system with DC fault ride-through capability[J]. Proceedings of the CSEE, 2015, 35(17): 4345-4352.
[19] 徐政, 王世佳, 李宁璨, 等. 适用于远距离大容量架空线路的LCC-MMC串联混合型直流输电系统[J]. 电网技术, 2016, 40(1): 55-63.
XU Z, WANG S J, LI N C, et al.A LCC and MMC series hybrid HVDC topology suitable for bulk power overhead line transmission[J]. Power system technology, 2016, 40(1): 55-63.
[20] 李晓栋, 徐政, 胡四全, 等. 3种混合直流输电系统的交流故障特性对比[J]. 电力自动化设备, 2019, 39(9): 228-235.
LI X D, XU Z, HU S Q, et al.Comparison of AC fault characteristics among three types of hybrid HVDC system[J]. Electric power automation equipment, 2019, 39(9): 228-235.
[21] 刘杉, 李修一. 面向高比例新能源外送的送端混合级联型特高压直流输电方案[J]. 中国电机工程学报, 2021, 41(S1): 108-120.
LIU S, LI X Y.Scheme of sending end hybrid cascaded UHVDC for delivery of high-proportion renewable energy[J]. Proceedings of the CSEE, 2021, 41(S1): 108-120.
[22] 孟沛彧, 向往, 迟永宁, 等.一种适用于大规模新能源远距离外送的分层混联输电系统[J]. 中国电机工程学报, 2021, 41(10): 3349-3363, 3661.
MENG P Y, XIANG W, CHI Y N, et al.A hierarchical LCC-MMC hybrid transmission system for transmitting large-scale renewable power over long-distance[J]. Proceedings of the CSEE, 2021, 41(10): 3349-3363, 3661.
[23] HUANG H Y, XU Z, LIN X.Improving performance of multi-infeed HVDC systems using grid dynamic segmentation technique based on fault current limiters[J]. IEEE transactions on power systems, 2012, 27(3): 1664-1672.
[24] 马文轩, 李斌, 王一振, 等. 受端混联型LCC-MMC直流输电系统的自适应电压协调控制方法[J]. 高电压技术, 2021, 47(12): 4518-4527.
MA W X, LI B, WANG Y Z, et al.Adaptive voltage coordinated control method of receiving end hybrid LCC-MMC HVDC[J]. High voltage engineering, 2021, 47(12): 4518-4527.
[25] 刘泽洪, 王绍武, 种芝艺, 等. 适用于混合级联特高压直流输电系统的可控自恢复消能装置[J]. 中国电机工程学报, 2021, 41(2): 514-524.
LIU Z H, WANG S W, CHONG Z Y, et al.Controllable and adaptive energy absorption device for hybrid cascaded UHVDC transmission system[J]. Proceedings of the CSEE, 2021, 41(2): 514-524.
[26] 许烽, 徐政. 基于LCC和FHMMC的混合型直流输电系统[J]. 高电压技术, 2014, 40(8): 2520-2530.
XU F, XU Z.Hybrid HVDC system based on LCC and FHMMC[J]. High voltage engineering, 2014, 40(8): 2520-2530.
[27] 徐雨哲, 徐政, 张哲任, 等. 基于LCC和混合型MMC的混合直流输电系统控制策略[J]. 广东电力, 2018, 31(9): 13-25.
XU Y Z, XU Z, ZHANG Z R, et al.Control strategy for hybrid HVDC transmission system based on LCC and hybrid MMC[J]. Guangdong electric power, 2018, 31(9): 13-25.
[28] 康勇, 林新春, 郑云, 等. 新能源并网变换器单机无穷大系统的静态稳定极限及静态稳定工作区[J]. 中国电机工程学报, 2020, 40(14): 4506-4515, 4730.
KANG Y, LIN X C, ZHENG Y, et al.The static stable-limit and static stable-working zone for single-machine infinite-bus system of renewable-energy grid-connected converter[J]. Proceedings of the CSEE, 2020, 40(14): 4506-4515, 4730.
[29] 徐衍会, 曹宇平. 直驱风机网侧换流器引发次/超同步振荡机理研究[J]. 电网技术, 2018, 42(5): 1556-1564.
XU Y H, CAO Y P.Research on mechanism of sub/sup-synchronous oscillation caused by GSC controller of direct-drive permanent magnetic synchronous generator[J]. Power system technology, 2018, 42(5): 1556-1564.
[30] 陈海荣, 徐政. 向无源网络供电的VSC-HVDC系统的控制器设计[J]. 中国电机工程学报, 2006, 26(23): 42-48.
CHEN H R, XU Z.Control design for VSC-HVDC supplying passive network[J]. Proceedings of the CSEE, 2006, 26(23): 42-48.
[31] 浙江大学. 混合直流输电系统受端电网故障下抑制受端换流器过压的控制方法: CN202111023962.5[P].2021-11-09.
Zhejiang University. Control method for suppressing overvoltage of the receiving converter in a hybrid HVDC transmission system under the fault of the receiving power grid: CN202111023962.5[P].2021-11-09.
[32] LIN W X, JOVCIC D, NGUEFEU S, et al.Full-bridge MMC converter optimal design to HVDC operational requirements[J]. IEEE transactions on power delivery, 2016, 31(3): 1342-1350.

PDF(2504 KB)

Accesses

Citation

Detail

段落导航
相关文章

/