基于势流理论建立一种串列式双风轮风力机非定常气动模型。模型中,升力面法用于计算叶片环量,使用自由尾迹模型实现尾迹畸变计算,通过诱导速度耦合前后风轮的叶片气动载荷与尾迹。以串联NREL 5 MW风力机为模型,2个风轮以相同转速相对旋转,考察对转双风轮功率在不同转速下的时均与动态特性。计算结果显示:双风轮最优总功率系数较单风轮提升34%,高转速运行时性能下降。对转双风轮功率周期波动,前后风轮相互势流干涉,前风轮尾迹干扰对应后风轮功率波谷。
Abstract
Vortex method based on the potential theory is applied to unsteady aerodynamic modeling of co-axial dual-rotor wind turbines(DRWT). In the model, the lifting surface method is used to calculate the blade circulation, and the free vortex wake model is used to calculate wake skewness, aerodynamic load and wake of front and rear wind turbine blades are coupled through the induced velocity. Two NREL 5 MW wind turbines are axial-linked as the reference DRWT, with two rotors rotating at the same speed and opposite directions. Power output is calculated under various rotation speeds to analyze period-averaged and dynamic characteristics. The results indicate that the optimal power coefficient of DRWT is 34% higher than SRWT, and decreases at high rotation speeds. Power of DRWT fluctuates periodically. Front and rear rotors interfere each other by blade induction, and wake of front rotor affects rear rotor, resulting in significant power troughs.
关键词
风力机 /
双风轮 /
涡方法 /
功率特性 /
气动干涉
Key words
wind turbines /
dual-rotor /
vortex method /
power characteristic /
aerodynamic interference
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] OZBAY A, TIAN W, HU H. A comparative study of the wake characteristics behind a single-rotor wind turbine and dual-rotor wind turbines[C]//Proceedings of the 32nd AIAA Applied Aerodynamics Conference. Atlanta, GA, 2014: AIAA2014-2282.
[2] APPA K.Counter rotating wind turbine system[R]. California, US: Energy Innovations Small Grant Program, 2001.
[3] QI H T, XU G H, LU C L, et al.A study of coaxial rotor aerodynamic interaction mechanism in hover with high-efficient trim model[J]. Aerospace science and technology, 2019, 84: 1116-1130.
[4] PLATZER S, RAULEDER J, MORTMER P, et al.Investigation of the flow fields of coaxial stacked and counter-rotating rotors using PIV measurements and URANS simulations[C]//Proceedings of the Vertical Flight Society 77th Annual Forum, Virtual Conference, 2021.
[5] SHEN W Z, ZAKKAM V K, SØRENSEN J N, et al. Analysis of counter-rotating wind turbines[J]. Journal of physics: conference series, 2007, 75: 012003.
[6] LIU X D, FENG B, LIU D, et al.Study on two-rotor interaction of counter-rotating horizontal axis tidal turbine[J]. Energy, 2022, 241: 122839.
[7] LEE S, KIM H, SON E, et al.Effects of design parameters on aerodynamic performance of a counter-rotating wind turbine[J]. Renewable energy, 2012, 42: 140-144.
[8] HWANG B, LEE S, LEE S.Optimization of a counter-rotating wind turbine using the blade element and momentum theory[J]. Journal of renewable and sustainable energy, 2013, 5(5): 52013.
[9] LEE S, SON E, LEE S.Velocity interference in the rear rotor of a counter-rotating wind turbine[J]. Renewable energy, 2013, 54: 235-240.
[10] SLEW K L, MILLER M, MATIDA E.A numerical investigation to identify dimensionless parameters for dual-rotor horizontal axis wind turbines[J]. Journal of physics: conference series, 2016, 753: 102006.
[11] ROSENBERG A, SHARMA A.A prescribed-wake vortex lattice method for preliminary design of co-axial, dual-rotor wind turbines[J]. Journal of solar energy engineering, 2016, 138(6): 061002.
[12] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5-MW reference wind turbine for offshore system development[J]. Contract, 2009: 1-75.
基金
国家重点研发计划(2020YFB1506601); 上海市科技创新行动计划(20dz1205300); 上海市IV类高峰学科-能源科学与技术-上海非碳基能源转换与利用研究院建设项目