提出3种结构不同的风能太阳能耦合天然气多能互补供热系统,结合全年太阳能测试数据及3年风能测试数据作为仿真模拟的边界条件与真实可靠的数据支撑,构建TRNSYS仿真模型。以呼和浩特市郊区典型建筑为例,对3套系统进行模拟与分析得出:集热效率与集热面积、风力机额定功率呈一种二元Parabola函数关系,集热效率随集热面积的增大而逐渐减小;燃气壁挂炉热效率随集热面积、风力机额定功率的变化不明显;燃气消耗量与集热面积、风力机额定功率呈一种以e为底的二元指数函数关系,当系统集热面积增加到一定数值后,燃气消耗量骤减;对比3种结构系统,串联系统较并联系统更节省化石能源的使用,两串联结构相比,对于农村典型建筑,出力顺序为“燃气壁挂炉→太阳能集热器→风力机”的串联结构系统更优。
Abstract
In this study, three types of wind and solar coupled natural gas multi-energy complementary heating systems with different structures are proposed, and a TRNSYS simulation model is constructed by combining annual solar test data and 3-year wind energy test data as boundary conditions for simulation and real and reliable data support. Taking typical buildings in the suburbs of Hohhot as an example, it can be concluded from the simulation and analysis of 3 systems: there is a binary Parabola function relationship between heat collection efficiency, heat collection area, and wind turbine rated power. The heat collection efficiency gradually decreases as the heat collection area increases; the thermal efficiency of a gas wall-mounted furnace does not change significantly with the heat collection area and the rated power of the wind turbine; there is a binary consumption index function based on e among gas consumption, heat collection area, rated power of wind turbine. The gas consumption decreases sharply when the heat collection area of the system increases to a certain value. By comparing these three-type structural systems, series systems can save more fossil energy usage than that of parallel systems. Compared to the two series structures, the GSW structural system with the output sequence “gas wall-mounted furnace → solar collector → wind turbine” is better for typical buildings in rural areas.
关键词
太阳能集热器 /
天然气 /
集热器效率 /
多能互补 /
风力机额定功率
Key words
solar collector /
natural gas /
collector efficiency /
multi-energy complementary /
wind turbine rated power
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 耿直, 李俊旭, 李仁凤, 等. 光热太阳能与风能互补清洁供暖系统特性分析[J]. 可再生能源, 2022, 40(5): 604-610.
GENG Z, LI J X, LI R F, et al.Characteristic analysis of the complementary clean heating system of solar thermal energy and wind energy[J]. Renewable energy resources, 2022, 40(5): 604-610.
[2] 孙鸣, 齐振宇, 桂旭. 基于风电、气、储综合能源利用的居民园区供暖系统[J]. 建筑节能, 2019, 47(8): 44-49, 134.
SUN M, QI Z Y, GUI X.Heating system of residential area based on the use of wind power, gas and storage[J]. Building energy efficiency, 2019, 47(8): 44-49, 134.
[3] 李源. 北方农宅多能互补供暖系统适宜性研究[D]. 沈阳: 沈阳建筑大学, 2022.
LI Y.Study on suitability of multi-energy complementary heating system for farmhouses in North China[D]. Shenyang: Shenyang Jianzhu University, 2022.
[4] BELLOS E, TZIVANIDIS C, ANTONOPOULOS K A.Parametric analysis and optimization of a solar assisted gas turbine[J]. Energy conversion and management, 2017, 139: 151-165.
[5] 邓鹏杰. 空气源热泵和太阳能联合供热系统在北方农村新型社区的应用研究[D]. 青岛: 青岛理工大学, 2018.
DENG P J.Research on application of ASHP and solar energy combined heating system in new rural community in northern China[D]. Qingdao: Qingdao University of Technology, 2018.
[6] KOU G X, CAI L L, YE Y J, et al. Case analysis of the solar heating system assisted by condensing wall-mounted gas heater[J]. Applied mechanics and materials, 2014, 672/673/674: 7-12.
[7] 白美兰. 内蒙古地区冬季持续变暖对采暖的影响[J]. 内蒙古气象, 2001(1): 26-27.
BAI M L.Influence of continuous warming in winter on heating in Inner Mongolia[J]. Meteorology journal of Inner Mongolia, 2001(1): 26-27.
[8] 代元军, 孙玉新, 陆亦工, 等. 风能辅助供暖的地源热泵系统经济性分析[J]. 节能, 2011, 30(1): 72-75, 3.
DAI Y J, SUN Y X, LU Y G, et al.The economic analysis of ground-source heat pump by using the wind energy as an assisted source[J]. Energy conservation, 2011, 30(1): 72-75, 3.
[9] 范艳妮, 张宏凯. 风能蓄热式土壤源热泵系统的研究[J]. 西部资源, 2015(3): 170-172.
FAN Y N, ZHANG H K.The stuey of the wind energy storage-ground source heat pump system[J]. Western resources, 2015(3): 170-172.
[10] 金国辉, 杨鹏, 丁超, 等. 内蒙古西部草原民居太阳能、 风能集成供热系统[J]. 真空科学与技术学报, 2020, 40(8): 762-767.
JIN G H, YANG P, DING C, et al.Residential heating in western Inner Mongolia with clean solar-wind energies: a simulation study[J]. Chinese journal of vacuum science and technology, 2020, 40(8): 762-767.
[11] GB 50495—2019, 太阳能供热采暖工程技术标准[S]. GB 50495—2019, Technical standard for solar heating system[S].
[12] GB/T 28745—2012, 家用太阳能热水系统储水箱试验方法[S].
GB/T 28745—2012, Test methods for storage tank of domestic solar water heating system[S].
基金
内蒙古自治区高等学校碳达峰碳中和研究专项项目(STZX202230); 国家自然科学基金(52368010); 内蒙古自治区档案科技项目(2022-39); 内蒙古自治区高等学校科学研究项目(NJZY21335)