不同地区太阳能光伏电解水制氢与储氢系统模拟研究

冯雷, 鲁家彤, 徐洪涛, 王珂, 杨辰斌

太阳能学报 ›› 2023, Vol. 44 ›› Issue (12) : 481-486.

PDF(1831 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1831 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (12) : 481-486. DOI: 10.19912/j.0254-0096.tynxb.2022-1353

不同地区太阳能光伏电解水制氢与储氢系统模拟研究

  • 冯雷1, 鲁家彤2, 徐洪涛2, 王珂2, 杨辰斌2
作者信息 +

SIMULATION STUDY OF HYDROGEN PRODUCTION AND STORAGE SYSTEM BY SOLAR PHOTOVOLTAIC ELECTROLYSIS WATER IN DIFFERENT REGIONS

  • Feng Lei1, Lu Jiatong2, Xu Hongtao2, Wang Ke2, Yang Chenbin2
Author information +
文章历史 +

摘要

该文设计一种家用太阳能与电网联合供电的电解水制氢与储氢系统,基于北京、银川和哈密3座城市不同气候条件,利用TRNSYS和GenOpt软件对比分析了系统的动态性能。结果表明:北京、银川和哈密三市的光伏组件最佳倾斜角度分别为36.56°、37.81°和41.87°,对应的光伏系统年总发电量为38329.2、47169.8和50701.2 kWh;基于相同的供氢速率和储氢罐容量,该系统年产氢量大致相同,北京为13151.5 m3,银川为13124.1 m3,哈密为13144.7 m3;哈密市从电网取电量最少,其太阳能制氢效益最高为87.73%,其次为银川市85.57%,北京市最低,为66.58%。

Abstract

An electrolytic water hydrogen production and storage system by combined solar energy with power grid was designed for household application in this paper. Based on different climate conditions of Beijing, Yinchuan and Hami, the dynamic performance of this system was analyzed by the software of TRNSYS and GenOpt. The results indicate that the optimal tilt angles of PV modules for three cities of Beijing, Yinchuan and Hami are 36.56°, 37.81° and 41.87°, respectively. The total power generated from PV modules are 38329.2, 47169.8 and 50701.2 kWh/year, respectively. Based on the same hydrogen supply rate and hydrogen storage tank capacity, the annual hydrogen generation in the three cities is roughly the same, 13151.5 m3 in Beijing, 13124.1 m3 in Yinchuan, and 13144.7 m3 in Hami. Hami takes the least amount of electricity from the power grid, resulting in a highest hydrogen production benefit of 87.73%. Yinchuan is 85.57%, and Beijing has the lowest benefit of 66.58%.;

关键词

太阳能 / 制氢 / 储氢 / 光伏组件

Key words

solar energy / hydrogen production / hydrogen storage / PV modules

引用本文

导出引用
冯雷, 鲁家彤, 徐洪涛, 王珂, 杨辰斌. 不同地区太阳能光伏电解水制氢与储氢系统模拟研究[J]. 太阳能学报. 2023, 44(12): 481-486 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1353
Feng Lei, Lu Jiatong, Xu Hongtao, Wang Ke, Yang Chenbin. SIMULATION STUDY OF HYDROGEN PRODUCTION AND STORAGE SYSTEM BY SOLAR PHOTOVOLTAIC ELECTROLYSIS WATER IN DIFFERENT REGIONS[J]. Acta Energiae Solaris Sinica. 2023, 44(12): 481-486 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1353
中图分类号: TK519    TQ116.2+1   

参考文献

[1] DINCER I, ROSEN M.Thermal energy storage systems and applications[M]. 3rd ed. United States: Wiley, 2002:1-58.
[2] 国务院. 我国今年将制定2030年前碳排放达峰行动方案[EB/OL]. http://www.gov.cn/zhengce/2021-03/06/content_5590830.htm.
The State Council. This year China will formulate an action plan for peaking Carbon emissions by2030 [EB/OL]. http://www.gov.cn/zhengce/2021-03/06/content_5590830.htm.
[3] ABE J O, POPOOLA A P I, AJENIFUJA E, et al. Hydrogen energy, economy and storage: review and recommendation[J]. International journal of hydrogen energy, 2019, 44(29): 15072-15086.
[4] 王泽. 太阳能作为新能源的应用前景[J]. 皮革制作与环保科技, 2021, 2(20): 30-31.
WANG Z.The application prospect of solar energy as new energy[J]. Leather manufacture and environmental technology, 2021, 2(20): 30-31.
[5] RATLAMWALA T A H, GADALLA M A, DINCER I. Performance assessment of an integrated PV/T and triple effect cooling system for hydrogen and cooling production[J]. International journal of hydrogen energy, 2011, 36(17): 11282-11291.
[6] AHMADI P, DINCER I, ROSEN M A.Transient thermal performance assessment of a hybrid solar-fuel cell system in Toronto, Canada[J]. International journal of hydrogen energy, 2015, 40(24): 7846-7854.
[7] OZDEN E, TARI I.Energy-exergy and economic analyses of a hybrid solar-hydrogen renewable energy system in Ankara, Turkey[J]. Applied thermal engineering, 2016, 99: 169-178.
[8] 张勇, 彭勇刚, 韦巍. 计及制氢效率的光-储-氢系统协调控制策略研究[J]. 太阳能学报, 2021, 42(11): 67-75.
ZHANG Y, PENG Y G, WEI W.Coordination control for PV, storage and hydrogen system considering hydrogen energy conversion efficiency[J]. Acta energiae solaris sinica, 2021, 42(11): 67-75.
[9] 张顺星, 苑易伟, 胡平, 等. 光伏-PEM直接耦合电解水制氢系统研究[J]. 工业仪表与自动化装置, 2022(3): 49-52.
ZHANG S X, YUAN Y W, HU P, et al.Research on photovoltaic-PEM electrolytic water hydrogen direct coupling system[J]. Industrial instrumentation & automation, 2022(3): 49-52.
[10] 瞿小广, 陈波, 杨兴林, 等. 光伏-氢燃料电池集成供电系统设计[J]. 机械制造与自动化, 2022, 51(4): 184-187.
QU X G, CHEN B, YANG X L, et al.Design of integrated power supply system for photovoltaics-hydrogen fuel cells[J]. Machine building & automation, 2022, 51(4): 184-187.
[11] KLEIN S,BECKMAN W,MITCHELL J,et al.TRNSYS 16:a transient system simulation program,user manual[M]. Madison: solar Energy Laboratory, University of Wisconsin, 2004: 1-5.
[12] REMUND J,MULLER S,SCHMUTZ M,et al.Meteonorm 8: handbook part I: software[M]. Switzerland: Meteotest AG, 2020:1-43.
[13] KARACAVUS B,AYDIN K.Hydrogen production and storage analysis of a system by using TRNSYS[J]. International journal of hydrogen energy, 2020, 45(60): 34608-34619.
[14] DUFFIE J A, BECKMAN W A,BLAIR N.Solar engineering of thermal processes, photovoltaics and wind[M]. 5th ed. United States: Wiley, 2020: 462-491.
[15] WETTER M.GenOpt generic optimization program, user manual, version 3.1.0.[M]. Berkeley: Simulation Research Group, Lawrence Berkeley National Laboratory, 2016: 6-10.

基金

上海市自然科学基金(20ZR1438700)

PDF(1831 KB)

Accesses

Citation

Detail

段落导航
相关文章

/