锂离子电池被广泛应用于支撑新能源并网设备中,其剩余使用寿命(RUL)预测对设备运维管理极为重要,该文提出一种基于差分电压和改进布谷鸟搜索算法(ICS)-Elman神经网络预测锂离子电池RUL的方法。首先,对电池内部的电化学反应和外部的数据特征进行分析,选取结合电池内外特征的差分电压曲线作为特征提取对象,在充电差分电压曲线和放电差分电压曲线中选取相关特征;其次,考虑电池容量再生现象,选取Elman神经网络作为电池容量预测模型;然后,为提高预测精度,考虑利用改进的布谷鸟搜索算法对网络的初始权值和阈值进行参数寻优,ICS算法以改进概率公式、增加扩散因子、混沌初始化3种方法对传统CS算法进行改进,最终形成ICS-Elman预测方法;最后,利用NASA数据集和自测数据集对ICS-Elman方法进行验证,对比分析CS-Elman、Elman方法,结果表明所构建的ICS-Elman方法能更准确有效地预测锂离子电池RUL。
Abstract
Lithium-ion batteries are widely used in equipment supporting new energy grid connection, and their remaining useful life (RUL) prediction is very important for equipment operation and maintenance management. This paper presents a method for predicting the remaining service life of lithium-ion batteries based on differential voltage and improved cuckoo search algorithm (ICS) -Elman neural network. Firstly, the internal electrochemical reaction and external data characteristics of the battery were analyzed, and the differential voltage curve combined with the internal and external characteristics of the battery was selected as the feature extraction object, and the relevant features were selected from the charge differential voltage curve and discharge differential voltage curve. Considering the phenomenon of battery capacity regeneration, a battery capacity prediction model based on Elman neural networks is established. In order to improve the prediction accuracy, the improved cuckoo search algorithm is used to optimize the initial weights and thresholds of the network. The cuckoo search is improved by three methods: improving the probability formula, increasing the diffusion factor and chaos initialization to form the ICS-Elman prediction method. Finally, the ICS-Elman method is validated by using NASA dataset and self-test dataset. The results show that the ICS-Elman method can predict the RUL of lithium-ion battery more accurately and effectively compared with the CS-Elman and Elman models.
关键词
锂离子电池 /
Elman神经网络 /
剩余使用寿命 /
改进布谷鸟搜索算法 /
差分电压曲线
Key words
lithium-ion batteries /
Elman neural networks /
remaining useful life /
improved cuckoo search algorithm /
curves of differential voltage
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李建林, 屈树慷, 马速良, 等. 电池储能系统辅助电网调频控制策略研究[J]. 太阳能学报, 2023, 44(3): 326-335.
LI J L, QU S K, MA S L, et al.Research on frequency modulation control strategy of auxiliary power grid in battery energy storage system[J]. Acta energiae solaris sinica, 2023, 44(3): 326-335.
[2] 何冰琛, 杨薛明, 王劲松, 等. 基于PCA-GPR的锂离子电池剩余使用寿命预测[J]. 太阳能学报, 2022, 43(5): 484-491.
HE B C, YANG X M, WANG J S, et al.Prediction of remaining useful life of lithium-ion batteries based on PCA-GPR[J]. Acta energiae solaris sinica, 2022, 43(5): 484-491.
[3] HU X S, XU L, LIN X K, et al.Battery lifetime prognostics[J]. Joule, 2020, 4(2): 310-346.
[4] LI X Y, YUAN C G, WANG Z P.Multi-time-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression[J]. Journal of power sources, 2020, 467: 228358.
[5] ZHANG S Z, ZHAI B Y, GUO X, et al.Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks[J]. Journal of energy storage, 2019, 26: 100951.
[6] ZHENG L F, ZHU J G, WANG G X, et al.Differential voltage analysis based state of charge estimation methods for lithium-ion batteries using extended Kalman filter and particle filter[J]. Energy, 2018, 158: 1028-1037.
[7] ZHANG S Z, GUO X, DOU X X, et al.A rapid online calculation method for state of health of lithium-ion battery based on coulomb counting method and differential voltage analysis[J]. Journal of power sources, 2020, 479: 228740.
[8] 许晓东, 唐圣金, 谢建, 等. 随机退化应力作用下设备剩余寿命预测方法[J]. 兵工学报, 2022, 43(3): 712-719.
XU X D, TANG S J, XIE J, et al.Remaining useful life prediction of equipment under random degradation stress[J]. Acta armamentarii, 2022, 43(3): 712-719.
[9] CONG X W, ZHANG C P, JIANG J C, et al.An improved unscented particle filter method for remaining useful life prognostic of lithium-ion batteries with Li(NiMnCo)O2 cathode with capacity diving[J]. IEEE access, 2020, 8: 58717-58729.
[10] 梁海峰, 袁芃, 高亚静. 基于CNN-Bi-LSTM网络的锂离子电池剩余使用寿命预测[J]. 电力自动化设备, 2021, 41(10): 213-219.
LIANG H F, YUAN P, GAO Y J.Remaining useful life prediction of lithium-ion battery based on CNN-Bi-LSTM network[J]. Electric power automation equipment, 2021, 41(10): 213-219.
[11] LI W H, JIAO Z P, DU L, et al.An indirect RUL prognosis for lithium-ion battery under vibration stress using Elman neural network[J]. International journal of hydrogen energy, 2019, 44(23): 12270-12276.
[12] ZHOU D, LI Z, ZHU J, et al.State of health monitoring and remaining useful life prediction of lithium-ion batteries based on temporal convolutional network[J]. IEEE access, 2020, 8: 53307-53320.
[13] GOEBEL K, SAHA B, SAXENA A, et al.Prognostics in battery health management[J]. IEEE instrumentation & measurement magazine, 2008, 11(4): 33-40.
[14] HONKURA K, TAKAHASHI K, HORIBA T.Capacity-fading prediction of lithium-ion batteries based on discharge curves analysis[J]. Journal of power sources, 2011, 196(23): 10141-10147.
[15] BLOOM I, WALKER L K, BASCO J K, et al.Differential voltage analyses of high-power lithium-ion cells. 4. Cells containing NMC[J]. Journal of power sources, 2010, 195(3): 877-882.
[16] 李练兵, 李思佳, 李洁, 等. 基于差分电压和Elman神经网络的锂离子电池RUL预测方法[J]. 储能科学与技术, 2021, 10(6): 2373-2384.
LI L B, LI S J, LI J, et al.RUL prediction of lithium-ion battery based on differential voltage and Elman neural network[J]. Energy storage science and technology, 2021, 10(6): 2373-2384.
[17] 张玉, 卢子广, 卢泉, 等. 基于Levy飞行改进鸟群算法的光伏直流微电网优化配置研究[J]. 太阳能学报, 2021, 42(5): 214-220.
ZHANG Y, LU Z G, LU Q, et al.Research on optimal configuration of photovoltaic dc microgrid based on Levy flight improved bird swarm algorithm[J]. Acta energiae solaris sinica, 2021, 42(5): 214-220.
[18] 张婷婷, 于明, 李宾, 等. 基于Wavelet降噪和支持向量机的锂离子电池容量预测研究[J]. 电工技术学报, 2020, 35(14): 3126-3136.
ZHANG T T, YU M, LI B, et al.Capacity prediction of lithium-ion batteries based on wavelet noise reduction and support vector machine[J]. Transactions of China Electrotechnical Society, 2020, 35(14): 3126-3136.
[19] 杨宇伦, 凌铭. 基于改进鸡群优化算法的质子交换膜燃料电池模型参数辨识[J]. 太阳能学报, 2023, 44(2): 269-278.
YANG Y L, LING M.Parameter identification of proton exchange membrane fuel cells model based on improved chicken swarm optimization algorithm[J]. Acta energiae solaris sinica, 2023, 44(2): 269-278.