基于TSO-MSMA算法在光伏系统MPPT中的研究

李艳波, 李林宜, 刘维宇, 姚博彬, 陈俊硕

太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 324-330.

PDF(2544 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2544 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 324-330. DOI: 10.19912/j.0254-0096.tynxb.2022-1367

基于TSO-MSMA算法在光伏系统MPPT中的研究

  • 李艳波1, 李林宜1, 刘维宇2, 姚博彬2, 陈俊硕1
作者信息 +

RESEARCH ON PHOTOVOLTAIC SYSTEM MPPT BASED ON TSO-MSMA ALGORITHM

  • Li Yanbo1, Li Linyi1, Liu Weiyu2, Yao Bobin2, Chen Junshuo1
Author information +
文章历史 +

摘要

传统MPPT算法存在易陷入局部最优的问题,且目前采用的智能优化算法解决该类问题也有追踪精度不足、追踪速度慢等问题。为解决上述问题,该文提出一种基于金枪鱼算法(TSO)与改进黏菌觅食算法(MSMA)的混合优化算法。该方法通过早期金枪鱼算法的抛物线觅食策略来加快搜索速度,对黏菌觅食算法采用基于混沌映射的反向学习策略进行改进,达到扩大算法探索范围的目的,使之不易于陷入局部最优,并提高算法运算速度。将改进后的算法应用于光伏系统MPPT中,仿真实验结果表明:改进后算法相较于单独TSO与MSMA算法,在不同遮光条件下追踪速率有较大提升,精确度高于单独的TSO与MSMA算法,拥有更好的追踪速度与追踪精度。

Abstract

The traditional MPPT algorithm has the problem of easily falling into local optima, and the intelligent optimization algorithms currently used to solve this type of problem also have shortcomings such as insufficient tracking accuracy and slow tracking speed. To improve the above shortcomings, this article proposes a hybrid optimization algorithm based on the tuna swarm algorithm (TSO) and the multi-strategy improved slime mould algorithm(MSMA). This method accelerates the search speed through the parabolic feeding strategy of the early tuna algorithm and improves the slime mold algorithm by using a reverse learning strategy based on chaotic mapping to expand the exploration range of the algorithm, making it less prone to falling into local optima, and improving the algorithm's operational speed. The improved algorithm is applied to the photovoltaic system MPPT, and the simulation results show that compared to the individual TSO and MSMA algorithms, the improved algorithm has a significant improvement in tracking speed under different shading conditions, with higher accuracy than the individual TSO and MSMA algorithms, and has better tracking speed and accuracy.

关键词

光伏系统 / 局部遮荫 / 最大功率点追踪 / 金枪鱼算法 / 改进黏菌觅食算法

Key words

photovoltaic system / partial shading / maximum power point tracking / tuna swarm optimization / multi-strategy improved slime mould algorithm

引用本文

导出引用
李艳波, 李林宜, 刘维宇, 姚博彬, 陈俊硕. 基于TSO-MSMA算法在光伏系统MPPT中的研究[J]. 太阳能学报. 2023, 44(8): 324-330 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1367
Li Yanbo, Li Linyi, Liu Weiyu, Yao Bobin, Chen Junshuo. RESEARCH ON PHOTOVOLTAIC SYSTEM MPPT BASED ON TSO-MSMA ALGORITHM[J]. Acta Energiae Solaris Sinica. 2023, 44(8): 324-330 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1367
中图分类号: TM615   

参考文献

[1] 聂晓华, 王薇. 混沌改进猫群算法及其在光伏MPPT中的应用[J]. 中国电机工程学报, 2016, 36(22): 6103-6110.
NIE X H, WANG W.Chaos improved cat swarm optimization and its application in the PV MPPT[J]. Proceedings of the CSEE, 2016, 36(22): 6103-6110.
[2] 陈斌, 王俊江, 赵明胤, 等. 基于改进鲸鱼优化算法的光伏发电系统MPPT控制研究[J]. 电力系统及其自动化学报, 2023, 35(2): 19-26.
CHEN B, WANG J J, ZHAO M Y, et al.Research on MPPT control of photovoltaic power generation system based on improved whale optimization algorithm[J]. Proceedings of the CSU-EPSA, 2023, 35(2): 19-26.
[3] 陈亚爱, 周京华, 李津, 等. 梯度式变步长MPPT算法在光伏系统中的应用[J]. 中国电机工程学报, 2014, 34(19): 3156-3161.
CHEN Y A, ZHOU J H, LI J, et al.Application of gradient variable step size MPPT algorithm in photovoltaic system[J]. Proceedings of the CSEE, 2014, 34(19): 3156-3161.
[4] 王伟, 戴朝华, 陈维荣, 等. 改进功率预测变步长扰动法在光伏MPPT中的研究[J]. 太阳能学报, 2022, 43(2): 217-225.
WANG W, DAI C H, CHEN W R, et al.Research on improved variable step perturbation algorithm for power prediction in photovoltaic MPPT[J]. Acta energiae solaris sinica, 2022, 43(2): 217-225.
[5] TAN M L, LI Y T, DING D L, et al.An improved JADE hybridizing with tuna swarm optimization for numerical optimization problems[J]. Mathematical problems in engineering, 2022, 2022: 1-17.
[6] SUN K J, JIA H M, LI Y, et al.Hybrid improved slime mould algorithm with adaptive β hill climbing for numerical optimization[J]. Journal of intelligent & fuzzy systems, 2021, 40(1): 1667-1679.
[7] 王加健, 帕孜来·马合木提, 孔博龙. 基于改进樽海鞘群算法的光伏系统MPPT研究[J]. 太阳能学报, 2022, 43(4): 191-197.
WANG J J, PAZLAI M H M T, KONG B L. Research on MPPT of photovoltaic system based on improved salp swarm algorithm[J]. Acta energiae solaris sinica, 2022, 43(4): 191-197.
[8] AHMADIANFAR I,NOORI R M,TOGUN H, et al.Multi-strategy slime mould algorithm for hydropower multi-reservoir systems optimization[J]. Knowledge-based systems, 2022, 250: 109048.
[9] 郭雨鑫, 刘升, 张磊, 等. 精英反向与二次插值改进的黏菌算法[J]. 计算机应用研究, 2021, 38(12): 3651-3656.
GUO Y X, LIU S, ZHANG L, et al.Elite opposition-based learning quadratic interpolation slime mould algorithm[J]. Application research of computers, 2021, 38(12): 3651-3656.
[10] XIE L, HAN T, ZHOU H, et al.Tuna swarm optimization: a novel swarm-based metaheuristic algorithm for global optimization[J]. Computational intelligence and neuroscience, 2021, 2021: 9210050.
[11] LI S M, CHEN H L, WANG M J, et al.Slime mould algorithm: a new method for stochastic optimization[J]. Future generation computer systems, 2020, 111: 300-323.
[12] 贾鹤鸣, 刘宇翔, 刘庆鑫, 等. 融合随机反向学习的黏菌与算术混合优化算法[J]. 计算机科学与探索, 2022, 16(5): 1182-1192.
JIA H M, LIU Y X, LIU Q X, et al.Hybrid algorithm of slime mould algorithm and arithmetic optimization algorithm based on random opposition-based learning[J]. Journal of frontiers of computer science and technology, 2022, 16(5): 1182-1192.
[13] MIAO H, QIU Z R, ZENG C B.Multi-strategy improved slime mould algorithm and its application in optimal operation of cascade reservoirs[J]. Water resources management, 2022, 36(9): 3029-3048.
[14] TANG A D, TANG S Q, HAN T, et al.A modified slime mould algorithm for global optimization[J]. Computational intelligence and neuroscience, 2021, 2021: 2298215.
[15] 高嘉乐, 邢清华, 李龙跃, 等. 采用投影螺旋搜索的改进粒子群算法[J]. 西安交通大学学报, 2018, 52(6): 48-54.
GAO J L, XING Q H, LI L Y, et al.An improved particle swarm optimization algorithm with projective spiral searches[J]. Journal of Xi’an Jiaotong University, 2018, 52(6): 48-54.
[16] MEHBODNIYA A, DOURAKI B K,WEBBER J L, et al.Multilayer reversible data hiding based on the difference expansion method using multilevel thresholding of host images based on the slime mould algorithm[J]. Processes, 2022, 10(5): 858.
[17] 刘宇凇, 刘升. 无迹西格玛点引导的拟反向黏菌算法及其工程应用[J]. 计算机应用研究, 2022, 39(9): 2709-2716.
LIU Y S, LIU S.Unscented sigma point guided quasi-opposite slime mould algorithm and its application in engineering problem[J]. Application research of computers, 2022, 39(9): 2709-2716.
[18] 赵斌, 袁清, 王力, 等. 基于改进蚁狮算法的光伏多峰值MPPT控制[J]. 太阳能学报, 2021, 42(9): 132-139.
ZHAO B, YUAN Q, WANG L, et al.Multi-peak MPPT control of PV array based on improved ALO algorithm[J]. Acta energiae solaris sinica, 2021, 42(9): 132-139.
[19] 张鹏, 周碧英. 光伏电池精确工程模型及输出特性研究[J]. 电子测量与仪器学报, 2016, 30(1): 151-158.
ZHANG P, ZHOU B Y.Research on accurate engineering model and output characteristics of photovoltaic cell[J]. Journal of electronic measurement and instrumentation, 2016, 30(1): 151-158.

基金

国家重点研发计划(2021YFB1600200); 国家自然科学基金面上项目(12172064); 陕西省重点研发计划(2021KW-13)

PDF(2544 KB)

Accesses

Citation

Detail

段落导航
相关文章

/