NREL 5 MW风力机叶片外部翼型结冰模拟

杜静宇, 胡良权, 任鑫, 沈昕

太阳能学报 ›› 2023, Vol. 44 ›› Issue (12) : 298-305.

PDF(2658 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2658 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (12) : 298-305. DOI: 10.19912/j.0254-0096.tynxb.2022-1392

NREL 5 MW风力机叶片外部翼型结冰模拟

  • 杜静宇1, 胡良权2, 任鑫1, 沈昕2
作者信息 +

ICING SIMULATION OF AIRFOIL OF NREL 5 MW WIND TURBINE BLADE

  • Du Jingyu1, Hu Liangquan2, Ren Xin1, Shen Xin2
Author information +
文章历史 +

摘要

该文首先建立欧拉法水滴收集系数模型和风力机叶片翼型结冰模型,并以NACA0012翼型结冰算例验证该模型的有效性,而后开展NREL 5 MW风力机叶片外部翼型(NACA64618)结冰数值模拟,对风速、液态水含量和水滴直径等参数在结冰速率的影响方面进行了讨论。数值模拟结果表明:随攻角增大,NACA64618翼型结冰区域移向压力面,结冰厚度增加(最大增加量约为167%);增大风速、液态水含量和水滴直径均加剧NACA64618翼型结冰,结冰区域扩大、结冰量与结冰厚度增加。

Abstract

In this paper, the Euler method water droplet collection coefficient model and the airfoil icing model are established, and the NACA0012 airfoil icing calculation example is used to verify the effectiveness of the model. The numerical simulation of NREL 5 MW wind turbine blade outer airfoil icing (NACA64618) is carried out. The effects of wind speed, liquid water content and droplet diameter on the icing of the airfoil are studied. The numerical simulation results show that with the increase of the angle of attack, the icing area of NACA64618 airfoil moves towards the pressure surface, and the icing thickness increases (the maximum increase is about 167%). The increase of wind speed, liquid water content and droplet diameter can all aggravate the icing of NACA64618 airfoil, and increase the icing area, icing amount and icing thickness.

关键词

风力机 / 叶片 / 翼型 / 结冰 / 数值模拟 / 水滴撞击特性

Key words

wind turbines / blades / airfoil / freezing / numerical simulation / water droplets impingement characteristics

引用本文

导出引用
杜静宇, 胡良权, 任鑫, 沈昕. NREL 5 MW风力机叶片外部翼型结冰模拟[J]. 太阳能学报. 2023, 44(12): 298-305 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1392
Du Jingyu, Hu Liangquan, Ren Xin, Shen Xin. ICING SIMULATION OF AIRFOIL OF NREL 5 MW WIND TURBINE BLADE[J]. Acta Energiae Solaris Sinica. 2023, 44(12): 298-305 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1392
中图分类号: TK83   

参考文献

[1] BATTISTI L.Wind turbines in cold climates: icing impacts and mitigation systems[M]. Berlin: Springer, 2015.
[2] PRYOR S C, BARTHELMIE R J.Climate change impacts on wind energy: a review[J]. Renewable and sustainable energy reviews, 2010, 14(1): 430-437.
[3] TAMMELIN B, SEIFERT H.Large wind turbines go into cold climate regions[C]//EWEC. Copenhagen, Denmark, 2001.
[4] CATTIN R.Icing of wind turbines[C]//Onshore O&M Forum, Hamburg, Germany, 2013.
[5] DROUBI M G, ISLAM S Z.Investigation of the effect of ice accretion on wind turbine aerodynamics and performance[C]// UK-China Workshop on Wind Power in Cold Climate. Mianyang, China, 2016.
[6] DAVIS N N, PINSON P, HAHMANN A N, et al.Identifying and characterizing the impact of turbine icing on wind farm power generation[J]. Wind energy, 2016, 19(8): 1503-1518.
[7] BURTCH D G.Using reanalysis data for the prediction of seasonal wind turbine power losses due to icing[D]. North Dakota: University of North Dakota, 2014.
[8] WALLENIUS T, LEHTOMÄKI V. Overview of cold climate wind energy: challenges, solutions, and future needs[J]. WIREs energy and environment, 2016, 5(2): 128-135.
[9] SUNDEN B, WU Z.On icing and icing mitigation of wind turbine blades in cold climate[J]. Journal of energy resources technology, 2015, 137(5): 051203.
[10] MALMSTEN J K.Wind turbine production losses in cold climate[D]. Gotland: Gotland University, 2011.
[11] ILINCA A.Analysis and mitigation of icing effects on wind turbines[J]. Wind turbines, 2011, 4(4): 183-214.
[12] BARBER S, WANG Y, JAFARI S, et al.The impact of ice formation on wind turbine performance and aerodynamics[J]. Journal of solar energy engineering, 2011, 133(1): 1.
[13] 李岩, 田川公太朗. 叶片附着物对直线翼垂直轴风力机性能的影响[J]. 动力工程, 2009, 29(3): 292-296.
LI Y, KOTARO T.Influence of blade attachment on performance of the straight-bladed vertical axis wind turbine[J]. Journal of power engineering, 2009, 29(3): 292-296.
[14] HAN Y Q, PALACIOS J, SCHMITZ S.Scaled ice accretion experiments on a rotating wind turbine blade[J]. Journal of wind engineering and industrial aerodynamics, 2012, 109: 55-67.
[15] 易贤, 王开春, 马洪林, 等. 水平轴风力机结冰及其影响计算分析[J]. 太阳能学报, 2014, 35(6): 1052-1058.
YI X, WANG K C, MA H L, et al.Computation of icing and its effect of horizontal axis wind turbine[J]. Acta energiae solaris sinica, 2014, 35(6): 1052-1058.
[16] PEDERSEN M C, SØRENSEN H. Towards a CFD model for prediction of wind turbine power losses due to icing in cold climate[C]// International Symposium on Transport Phenomena and Dynamics of Rotating Machinery. Honolulu, HI, USA, 2016.
[17] PEDERSEN M C, SØRENSEN H, SWYTINK-BINNEMA N, et al. Measurements from a cold climate site in Canada: boundary conditions and verification methods for CFD icing models for wind turbines[J]. Cold regions science and technology, 2018, 147: 11-21.
[18] 邓晓湖, 卢绪祥, 李录平, 等. 水平轴风力机叶片翼型结冰的数值模拟[J]. 能源技术, 2010, 31(5): 266-271.
DENG X H, LU X X, LI L P, et al.Numerical simulation of airfoil ice accretion process on horizontal-axis wind turbine blade[J]. Energy technology, 2010, 31(5): 266-271.
[19] HOMOLA M C, WALLENIUS T, MAKKONEN L, et al.Turbine size and temperature dependence of icing on wind turbine blades[J]. Wind engineering, 2010, 34(6): 615-627.
[20] 任鹏飞, 徐宇, 宋娟娟, 等. 霜冰条件对翼型气动性能影响数值研究[J]. 工程热物理学报, 2014, 35(4): 663-668.
REN P F, XU Y, SONG J J, et al.Numerical study about the influence of rime ice conditions on airfoil[J]. Journal of engineering thermophysics, 2014, 35(4): 663-668.
[21] 赵秋月. 航空发动机进口支板及整流帽罩水滴撞击特性的计算分析[D]. 上海: 上海交通大学, 2011.
ZHAO Q Y.Computational analysis of water droplet impingerment property for the inlet struct and the cone[D]. Shanghai: Shanghai Jiao Tong University, 2011.
[22] 杨胜华, 林贵平, 申晓斌. 三维复杂表面水滴撞击特性计算[J]. 航空动力学报, 2010, 25(2): 284-290.
YANG S H, LIN G P, SHEN X B.Water droplet impingement prediction for three-dimensional complex surfaces[J]. Journal of aerospace power, 2010, 25(2): 284-290.
[23] 易贤, 王开春, 桂业伟, 等. 结冰面水滴收集率欧拉计算方法研究及应用[J]. 空气动力学学报, 2010, 28(5): 596-601, 608.
YI X, WANG K C, GUI Y W, et al.Study on Eulerian method for icing collection efficiency computation and its application[J]. Acta aerodynamica sinica, 2010, 28(5): 596-601, 608.
[24] KIM J, DENNIS P G, SANKAR L, et al.Ice accretion modeling using an eulerian approach for droplet impingement[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Grapevine, TX, USA, 2013: 246.
[25] WIROGO S, SRIRAMBHATLA S.An eulerian method to calculate the collection efficiency on two and three dimensional bodies[C]//41st Aerospace Sciences Meeting and Exhibit. Reno, NV, USA, 2003: 1073.
[26] 胡良权, 陈进格, 沈昕, 等. 风力机叶片结冰水滴收集系数计算[J]. 太阳能学报, 2020, 41(3): 22-28.
HU L Q, CHEN J G, SHEN X, et al.Calculation of water droplets collection efficiency on wind turbine blades[J]. Acta energiae solaris sinica, 2020, 41(3): 22-28.
[27] TONG X L, LUKE E.Eulerian simulations of icing collection efficiency using a singularity diffusion model[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 2005: 1246.
[28] ANSYS Inc.ANSYS FLUENT UDF Manual. ANSYS FLUENT 14.0[M] California:ANSYS Inc, 2011.
[29] SHIN J, BOND T.Results of an icing test on a NACA 0012 airfoil in the NASA Lewis Icing Research Tunnel[C]//30th Aerospace Sciences Meeting and Exhibit. Reno, NV, USA, 1992: 647.
[30] HASANZADEH K, LAURENDEAU E, PARASCHIVOIU I.Quasi-steady convergence of multistep Navier-Stokes icing simulations[J]. Journal of aircraft, 2013, 50(4): 1261-1274.
[31] 战培国. 国外寒冷地区风力机结冰问题研究[J]. 航空科学技术, 2016, 27(2): 1-6.
ZHAN P G.Review of the wind turbine icing in overseas cold regions[J]. Aeronautical science & technology, 2016, 27(2): 1-6.
[32] BURTON T, SHARPE D, JENKINS N, et al.Wind energy handbook[M]. Chichester: John Wiley & Sons Ltd, 2001.
[33] 刘磊. 风力机叶片非定常气动特性的研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2012.
LIU L.Research on the unsteady aerodynamic characteristics of wind turbine blades[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2012.
[34] VILLALPANDO F, REGGIO M, ILINCA A.Prediction of ice accretion and anti-icing heating power on wind turbine blades using standard commercial software[J]. Energy, 2016, 114: 1041-1052.
[35] REID T, BARUZZI G, OZCER I, et al.FENSAP-ICE simulation of icing on wind turbine blades, part 1: performance degradation[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Grapevine, TX, USA, 2013: 750.
[36] REID T, BARUZZI G, OZCER I, et al.FENSAP-ICE simulation of icing on wind turbine blades, part 2: ice protection system design[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine, TX, USA, 2013: 751.
[37] 胡良权. 水平轴风力机叶片结冰问题研究[D]. 上海: 上海交通大学, 2019.
HU L Q.Study of horizontal axis wind turbine blade icing[D]. Shanghai: Shanghai Jiao Tong University, 2019.

基金

中国华能集团清洁能源技术研究院青年基金(TO-21-CERI01); 上海市科技创新行动计划(20dz1205300)

PDF(2658 KB)

Accesses

Citation

Detail

段落导航
相关文章

/