以塔式太阳能聚光集热系统为研究对象,耦合蒙特卡洛光线追踪法和卷积法,通过综合考虑定日镜阴影和遮挡因子以及反射光束对热流密度的影响,建立一种精度高、计算量小的吸热器表面热流密度分布预测数学模型,获得考虑光线遮挡、余弦损失、溢出损失及大气衰减等因素时单定日镜及全镜场下的光迹追踪路线及热流密度分布规律。并根据镜场光学效率与镜面所处的位置关系提出一种镜场布局优化方式。优化后12:00时镜场的光学效率从43.5%提高到45.6%,日平均光学效率提高约2%,太阳热流密度分布更加均匀。
Abstract
Regarding to the tower solar concentrating receiver, both the Monte Carlo ray tracing method and the convolution method are employed to establish a high-precision and low consumed computing time algorithm to predict the heat flux density distribution on the surface of the receiver by synthetically considering the shading and blocking factor of heliostats and the influence of reflected solar light from the heliostats on distribution of heat flux. The ray tracing route and heat flux density distribution rule of a single heliostat and the whole heliostat field are obtained when such factors as ray occlusion, cosine loss, spillover loss and atmospheric attenuation are considered. According to the relationship between the optical efficiency of the heliostat field and the position of the heliostat, an optimization method of the heliostats field layout is proposed. After optimization, the optical efficiency of the heliostat field is increased from 43.5% to 45.6% at the noon, and the average optical efficiency is increased by about 2% during daytime, and the solar heat flux density distribution is more uniform.
关键词
塔式太阳能热发电 /
光线追踪法 /
卷积法 /
太阳能 /
光学效率 /
热流密度
Key words
tower solar thermal power generation /
ray tracing /
convolution /
solar energy /
optical efficiency /
heat flux
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] HOWELL J R, PERLMUTTER M.Monte Carlo solution of thermal transfer through radiant media between gray walls[J]. Journal of heat transfer, 1964, 86(1): 116-122.
[2] COLLADO F J, GOMEZ A, TUREGANO J A.An analytic function for the flux density due to sunlight reflected from a heliostat[J]. Solar energy, 1986, 37(3): 215-234.
[3] 方嘉宾, 魏进家, 董训伟, 等. 腔式太阳能吸热器热性能的模拟计算[J]. 工程热物理学报, 2009, 30(3): 428-432.
FANG J B, WEI J J, DONG X W, et al.performance simulation of solar cavity receiver[J]. Journal of engineering thermophysics, 2009, 30(3): 428-432.
[4] 邓倩, 王跃社. 碟式太阳能复合圆锥型腔式吸热器热性能评估[J]. 工程热物理学报, 2018, 39(12): 2703-2707.
DENG Q, WANG Y S.Assessment on thermal performance of coupled-cone cavity receiver in solar dish power system[J]. Journal of engineering thermophysics, 2018, 39(12): 2703-2707.
[5] SÁNCHEZ-GONZÁLEZ A, SANTANA D. Solar flux distribution on central receivers: a projection method from analytic function[J]. Renewable energy, 2015, 74(2): 576-587.
[6] CRUZ N C, REDONDO J L, BERENGUEL M, et al.High performance computing for the heliostat field layout evaluation[J]. Journal of supercomputing, 2017, 73(1): 259-276.
[7] COLLADO F J, GUALLAR J.Campo: generation of regular heliostat fields[J]. Renewable energy, 2012, 46: 49-59.
[8] COLLADO F J.One-point fitting of the flux density produced by a heliostat[J]. Solar energy, 2010, 84(4): 673-684.
基金
陕西省创新能力支撑计划(2022KJXX-92); 西安交通大学基本科研业务费(xpt022022012)