基于风电机组聚类的风电场有功分层分配策略

赵靖英, 门孝伟, 姚帅亮

太阳能学报 ›› 2023, Vol. 44 ›› Issue (12) : 306-315.

PDF(6041 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(6041 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (12) : 306-315. DOI: 10.19912/j.0254-0096.tynxb.2022-1397

基于风电机组聚类的风电场有功分层分配策略

  • 赵靖英1,2, 门孝伟1,2, 姚帅亮3
作者信息 +

HIERARCHICAL ACTIVE POWER DISTRIBUTION STRATEGY OF WIND FARMS BASED ON WIND TURBINES CLUSTERING

  • Zhao Jingying1,2, Men Xiaowei1,2, Yao Shuailiang3
Author information +
文章历史 +

摘要

针对风电场传统有功功率平均分配策略造成风电机组运行损伤差异性大、机组调整和启停次数多等问题,提出基于风电机组聚类的降功率分层分配策略。考虑实际风电机组调控能力,设计基于鲸鱼优化算法(WOA)的改进极限学习机(ELM)风电机组功率预测模型。构建实际风速、实际发电功率和预测功率的三维特征矩阵,提出基于模拟退火遗传算法(SAGA)的改进模糊C均值(FCM)聚类模型。以预测功率平均值和标准差、最大降功率值确定机群和机组调度优先级序列,构造“机群-机组”的两层分配策略,减少调整机组和停机机组的数量、提升风电机组损伤均衡性。结合某风电场实际工况,设计限功率模式不停机与停机的分配策略验证方案,对比分析3种不同策略的分配效果,算例结果验证了提出的分配策略的有效性。

Abstract

In view of the problems caused by the traditional average active power distribution strategy of wind farms, such as large differences in wind turbine operation damage, multiple adjustment and start-stop times, etc., a hierarchical active power reduction distribution strategy based on wind turbine clustering is proposed in this paper. Considering the control ability of the actual wind turbines, a power prediction model of improved extreme learning machine (ELM) based on whale optimization algorithm (WOA) is designed. A three-dimensional characteristic matrix of the actual wind speed, actual generated power and predicted power of wind turbines is constructed, and an improved fuzzy C-means (FCM) clustering model based on simulated annealing genetic algorithm (SAGA) is proposed. The scheduling priority sequences of clusters and turbines are determined by the predicted power average value, standard deviation and maximum power reduction value, and a two-layer distribution strategy of “cluster-turbine” is constructed. The adjustment number of operating and shutdown turbines is reduced, and the degeneration balance among wind turbines is improved. Combined with the actual operation conditions of a wind farm, the verification scheme of the distribution strategy of non-stop and shutdown in the limited power mode is designed. The distribution effects of three different strategies are compared and analyzed. The results of the calculation example verify the effectiveness of the proposed distribution strategy.

关键词

风电机组 / 风电场 / 聚类算法 / 预测 / 功率控制 / 分层分配策略

Key words

wind turbines / wind farm / clustering algorithms / forecasting / power control / hierarchical distribution strategy

引用本文

导出引用
赵靖英, 门孝伟, 姚帅亮. 基于风电机组聚类的风电场有功分层分配策略[J]. 太阳能学报. 2023, 44(12): 306-315 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1397
Zhao Jingying, Men Xiaowei, Yao Shuailiang. HIERARCHICAL ACTIVE POWER DISTRIBUTION STRATEGY OF WIND FARMS BASED ON WIND TURBINES CLUSTERING[J]. Acta Energiae Solaris Sinica. 2023, 44(12): 306-315 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1397
中图分类号: TM614   

参考文献

[1] TUMMALA A S L V. A robust composite wide area control of a DFIG wind energy system for damping inter-area oscillations[J]. Protection and control of modern power systems, 2020, 5(1): 1-10.
[2] CHANG-CHIEN L R, YIN Y C. Strategies for operating wind power in a similar manner of conventional power plant[J]. IEEE transactions on energy conversion, 2009, 24(4): 926-934.
[3] 汤奕, 王琦, 陈宁, 等. 采用功率预测信息的风电场有功优化控制方法[J]. 中国电机工程学报, 2012, 32(34): 1-8.
TANG Y, WANG Q, CHEN N, et al.An optimal active power control method of wind farm based on wind power forecasting information[J]. Proceedings of the CSEE, 2012, 32(34): 1-8.
[4] KAZDA J, CUTULULIS N A.Model-optimized dispatch for closed-loop power control of waked wind farms[J]. IEEE transactions on control systems technology, 2019, 28(5): 2029-2036.
[5] GIONFRA N, SANDOU G, SIGUERDIDJANE H, et al.Wind farm distributed PSO-based control for constrained power generation maximization[J]. Renewable energy, 2019, 133: 103-117.
[6] MORENO S R, PIEREZAN J, DOS SANTOS COELHO L, et al. Multi-objective lightning search algorithm applied to wind farm layout optimization[J]. Energy, 2021, 216: 119214.
[7] EBRAHIMI F M, KHAYATIYAN A, FARJAH E.A novel optimizing power control strategy for centralized wind farm control system[J]. Renewable energy, 2016, 86: 399-408.
[8] MA K C, SOLTANI M, HAJIZADEH A, et al.Active power optimisation for wind farms under generator inter-turn short-circuit fault[J]. IET renewable power generation, 2020, 14(12): 2079-2088.
[9] 叶林, 任成, 李智, 等. 风电场有功功率多目标分层递阶预测控制策略[J]. 中国电机工程学报, 2016, 36(23): 6327-6336, 6597.
YE L, REN C, LI Z, et al.Stratified progressive predictive control strategy for multi-objective dispatching active power in wind farm[J]. Proceedings of the CSEE, 2016, 36(23): 6327-6336, 6597.
[10] ZHANG J H, LIU Y Q, INFIELD D, et al.Optimal power dispatch within wind farm based on two approaches to wind turbine classification[J]. Renewable energy, 2017, 102: 487-501.
[11] 刘军, 张彬彬, 赵婷. 基于模糊评价的风电场有功功率分配算法[J]. 电工技术学报, 2019, 34(4): 786-794.
LIU J, ZHANG B B, ZHAO T.Research on wind farm active power dispatching algorithm based on fuzzy evaluation[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 786-794.
[12] 林俐, 谢永俊, 朱晨宸, 等. 基于优先顺序法的风电场限出力有功控制策略[J]. 电网技术, 2013, 37(4): 960-966.
LIN L, XIE Y J, ZHU C C, et al.Priority list-based output-restricted active power control strategy for wind farms[J]. Power system technology, 2013, 37(4): 960-966.
[13] 李茜, 毛雅铃, 王武双, 等. 基于动态机组分类的风电场优化调度[J]. 太阳能学报, 2021, 42(6): 419-424.
LI Q, MAO Y L, WANG W S, et al.Optimal scheduling of wind farms based on dynamic wind turbine clustering[J]. Acta energiae solaris sinica, 2021, 42(6): 419-424.
[14] 仲悟之, 李崇钢, 崔杨, 等. 考虑历史相似性加权的超短期风电功率组合预测[J]. 太阳能学报, 2022, 43(6): 160-168.
ZHONG W Z, LI C G, CUI Y, et al.Combined prediction of ultra-short term wind power considering weighted historical similarity[J]. Acta energiae solaris sinica, 2022, 43(6): 160-168.
[15] SAFARI N, CHUNG C Y, PRICE G C D. Novel multi-step short-term wind power prediction framework based on chaotic time series analysis and singular spectrum analysis[J]. IEEE transactions on power systems, 2018, 33(1): 590-601.
[16] 朱倩雯, 叶林, 赵永宁, 等. 风电场输出功率异常数据识别与重构方法研究[J]. 电力系统保护与控制, 2015, 43(3): 38-45.
ZHU Q W, YE L, ZHAO Y N, et al.Methods for elimination and reconstruction of abnormal power data in wind farms[J]. Power system protection and control, 2015, 43(3): 38-45.
[17] GB/T 19963.1—2021, 风电场接入电力系统技术规定第1部分: 陆上风电[S].
GB/T 19963.1—2021, Technical specification for connecting wind farm to power system: Part 1: on shore wind power[S].
[18] 史加荣, 赵丹梦, 王琳华, 等. 基于RR-VMD-LSTM的短期风电功率预测[J]. 电力系统保护与控制, 2021, 49(21): 63-70.
SHI J R, ZHAO D M, WANG L H, et al.Short-term wind power prediction based on RR-VMD-LSTM[J]. Power system protection and control, 2021, 49(21): 63-70.
[19] 廖勇, 何金波, 姚骏, 等. 基于变桨距和转矩动态控制的直驱永磁同步风力发电机功率平滑控制[J]. 中国电机工程学报, 2009, 29(18): 71-77.
LIAO Y, HE J B, YAO J, et al.Power smoothing control strategy of direct-driven permanent magnet synchronous generator for wind turbine with pitch angle control and torque dynamic control[J]. Proceedings of the CSEE, 2009, 29(18): 71-77.
[20] 肖运启, 贺贯举. 大型风电机组限功率运行特性分析及其优化调度[J]. 电力系统自动化, 2014, 38(20): 18-25, 120.
XIAO Y Q, HE G J.Power-limited operation characteristic analysis and optimal scheduling for large scale wind turbines[J]. Automation of electric power systems, 2014, 38(20): 18-25, 120.

基金

国家自然科学基金(51377044); 河北省自然科学基金(E2019202481)

PDF(6041 KB)

Accesses

Citation

Detail

段落导航
相关文章

/