风电场柔直送出系统联接变故障特性分析及差动保护方案

冯海洋, 束洪春, 杨兴雄, 黄柯昊, 岳清, 周子超

太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 125-133.

PDF(2620 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2620 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 125-133. DOI: 10.19912/j.0254-0096.tynxb.2022-1414

风电场柔直送出系统联接变故障特性分析及差动保护方案

  • 冯海洋, 束洪春, 杨兴雄, 黄柯昊, 岳清, 周子超
作者信息 +

ANALYSIS OF VSC-HVDC INTERFACE TRANSFORMER FAULT CHARACTERISTICS AND DIFFERENTIAL PROTECTION SCHEME IN WIND FARMS VSC-HVDC TRANSMISSION SYSTEM

  • Feng Haiyang, Shu Hongchun, Yang Xingxiong, Huang Kehao, Yue Qing, Zhou Zichao
Author information +
文章历史 +

摘要

联接变是衔接交直流系统的桥梁,对其故障特性的分析是构建保护方案的重要基础。然而,双馈风电经柔直送出系统中整流侧联接变发生故障时,机侧短路电流呈现出频偏和弱馈故障特性,而阀侧短路电流不仅含有大量谐波,在不同的控制策略下还存在幅值差异、相角差异,甚至会出现断流的情况。如此复杂的故障特性给联接变的差动保护正确动作带来十分严峻的挑战。为此,该文以联接变阀侧发生最为常见的单相接地故障为例,分析双馈风电场柔直送出系统联接变风电场侧及阀侧短路电流故障特性及致使差动保护性能降低的原因。在此基础上,提出分别利用形态学滤波分解及同步挤压小波变换对换变流两侧电流进行处理,并以处理后的两侧电流轨迹图斜率为判据,对区内外故障和涌流进行识别的保护方案。最后,基于PSCAD/EMTDC的仿真结果表明:所提出的方案能很好地对风电联接变区内外故障和涌流进行识别,在不同影响因素条件下该方案也具有良好的适用性。

Abstract

VSC-HVDC interfacetransformer is a bridge connecting AC and DC systems, the analysis of its fault characteristics is critical for protection scheme. However, when MMC of wind farm side (WFMMC) fault occurs in the VSC-HVDC interfacetransformer in double fed induction generators (DFIG) wind farms for voltage source converter based high voltage direct current (VSC-HVDC) transmission, the short-circuit current of DFIG side shows the characteristics of frequency offset and weak feed. The short-circuit current of WFMMC side not only contains a large amount of harmonic, but also amplitude difference, phase difference, and even disconnection under different control strategies. Such complex fault characteristics bring extremely high requirements and severe challenges to the appropriate operation of VSC-HVDC interfacetransformer differential protection. Therefore, this paper selects the most common single-phase grounding fault on the converter transformer WFMMC side for case studies, which analyzes the fault characteristics of short-circuit current on the DFIG wind farms side and WFMMC side. Meanwhile, the reasons for the decline of differential protection performance is also discussed. On this basis, this work proposes a protection scheme to process the currents on both sides of the VSC-HVDC interfacetransformer by using morphological filter decomposition and synchrosqueezed wavelet transforms. Besides, the internal or external faults are identified based on the slope of the current trajectory drawn by processed current. Finally, the simulation results based on PSCAD show that the proposed scheme can identify the faults and inrush currents rapidly and accurately, meanwhile, the scheme also shows good applicability under different influencing.

关键词

风力发电 / 联接变压器 / 双馈风力发电机 / 形态学滤波分解 / 同步挤压小波变换 / 电流二维轨迹

Key words

wind power / VSC-HVDC interfacetransformer / doubly-fed induction generator / morphological decomposition / synchronous wavelet transform / two dimensional current trajectory

引用本文

导出引用
冯海洋, 束洪春, 杨兴雄, 黄柯昊, 岳清, 周子超. 风电场柔直送出系统联接变故障特性分析及差动保护方案[J]. 太阳能学报. 2024, 45(1): 125-133 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1414
Feng Haiyang, Shu Hongchun, Yang Xingxiong, Huang Kehao, Yue Qing, Zhou Zichao. ANALYSIS OF VSC-HVDC INTERFACE TRANSFORMER FAULT CHARACTERISTICS AND DIFFERENTIAL PROTECTION SCHEME IN WIND FARMS VSC-HVDC TRANSMISSION SYSTEM[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 125-133 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1414
中图分类号: TM442   

参考文献

[1] 陈思源, 景巍巍, 史明明, 等. 新能源接入背景下的谐波源建模方法综述[J]. 电力系统保护与控制, 2022, 50(7): 162-175.
CHEN S Y, JING W W, SHI M M, et al.Review of harmonic source modeling methods with the background of renewable energy access[J]. Power system protection and control, 2022, 50(7): 162-175.
[2] 朱彦名, 徐潇源, 严正, 等. 面向电力物联网的含可再生能源配电网运行展望[J]. 电力系统保护与控制, 2022, 50(2): 176-187.
ZHU Y M, XU X Y, YAN Z, et al.Prospect of renewable energy integrated distribution network operation in the power Internet of Things[J]. Power system protection and control, 2022, 50(2): 176-187.
[3] 高子杰, 刘超, 钱松林, 等. 换流变网侧阀侧短路特征分析[J]. 电工技术, 2020(5): 76-77, 80.
GAO Z J, LIU C, QIAN S L, et al.Analysis of valve-side short-circuit characteristics on converter grid side[J]. Electric engineering, 2020(5): 76-77, 80.
[4] 李国庆, 徐亚男, 江守其, 等. 海上风电经柔性直流联网系统受端交流故障穿越协调控制策略[J]. 电力系统保护与控制, 2022, 50(7): 111-119.
LI G Q, XU Y N, JIANG S Q, et al.Coordinated control strategy for receiving-end AC fault ride-through of an MMC-HVDC connecting offshore wind power[J]. Power system protection and control, 2022, 50(7): 111-119.
[5] 秦继朔, 贾科, 杨彬, 等. 风电多端柔性直流并网系统交流送出线故障短路电流解析[J]. 电力系统自动化, 2021, 45(14): 47-55.
QIN J S, JIA K, YANG B, et al.Short-circuit fault current analysis of AC transmission line of MMC-MTDC system for wind power intergration[J]. Automation of electric power systems, 2021, 45(14): 47-55.
[6] 王渝红, 傅云涛, 曾琦, 等. 柔性直流电网故障保护关键技术研究综述[J]. 高电压技术, 2019, 45(8): 2362-2374.
WANG Y H, FU Y T, ZENG Q, et al.Review on key techniques for fault protection of flexible DC grids[J]. High voltage engineering, 2019, 45(8): 2362-2374.
[7] 张钦智, 王宾, 李琰, 等. 风电场经柔性直流输电系统故障穿越协调控制研究[J]. 电力系统保护与控制, 2020, 48(10): 131-138.
ZHANG Q Z, WANG B, LI Y, et al.Research on fault crossing coordination control of a wind farm via a flexible direct current transmission system[J]. Power system protection and control, 2020, 48(10): 131-138.
[8] 郑黎明, 贾科, 毕天姝, 等. 海上风电接入柔直系统交流侧故障特征及对保护的影响分析[J]. 电力系统保护与控制, 2021, 49(20): 20-32.
ZHENG L M, JIA K, BI T S, et al.AC-side fault analysis of a VSC-HVDC transmission system connected to offshore wind farms and the impact on protection[J]. Power system protection and control, 2021, 49(20): 20-32.
[9] 叶志军, 于旺, 郑荣显, 等. 变压器空充下的励磁涌流二次谐波特性分析[J]. 电力系统自动化, 2020, 44(24): 145-150.
YE Z J, YU W, ZHENG R X, et al.Characteristic analysis of second harmonic of magnetizing inrush current with No-load transformer energization[J]. Automation of electric power systems, 2020, 44(24): 145-150.
[10] 吴建云, 国兴超, 罗美玲, 等. 逆变侧换流变压器网侧接地故障对差动保护影响分析[J]. 电力系统保护与控制, 2020, 48(17): 170-178.
WU J Y, GUO X C, LUO M L, et al.Analysis of influence of grounding fault of the network side of an inverter-side converter transformer on differential protection[J]. Power system protection and control, 2020, 48(17): 170-178.
[11] 翁汉琍, 李雪华, 鲁俊生, 等. 特高压换流变压器对称性涌流的生成及其对大差保护的影响[J]. 电力系统自动化, 2017, 41(5): 153-158.
WENG H L, LI X H, LU J S, et al.Symmetrical inrush current mechanism of ultra-high voltage converter transformer and its impact on converter connection-transformer differential protection[J]. Automation of electric power systems, 2017, 41(5): 153-158.
[12] 夏聆峰. 换流变压器涌流问题研究[D]. 昆明: 昆明理工大学, 2016.
XIA L F.Research on Commutation inrush current of transformer Problem[D]. Kunming: Kunming University of Science and Technology, 2016.
[13] 郑涛, 胡鑫. 特高压换流变故障性涌流产生机理及其对差动保护的影响[J]. 电力自动化设备, 2019, 39(5): 109-115.
ZHENG T, HU X.Fault inrush current mechanism of UHV converter transformer and its impacts on differential protection[J]. Electric power automation equipment, 2019, 39(5): 109-115.
[14] 郑涛, 何瑞, 杨鑫慧, 等. 故障性涌流影响下换流变差动保护的可靠性风险评估[J]. 电网技术, 2021, 45(11): 4490-4497.
ZHENG T, HE R, YANG X H, et al.Reliability risk assessment of differential protection of converter transformer under influence of fault-induced inrush current[J]. Power system technology, 2021, 45(11): 4490-4497.
[15] 张艳霞, 张富贺, 卢静怡, 等. 一种防止换流变压器阀侧单相接地时差动保护误闭锁的方案[J]. 电网技术, 2021, 45(6): 2388-2395.
ZHANG Y X, ZHANG F H, LU J Y, et al.Novel solution to prevent differential protection mal-blocking of converter transformer at single-phase grounding fault at valve side[J]. Power system technology, 2021, 45(6): 2388-2395.
[16] 邓祥力, 陈兴霖. 基于电流故障分量时频矩阵相角差的换流变差动保护研究[J]. 电力系统保护与控制, 2021, 49(23): 44-53.
DENG X L, CHEN X L.Converter transformer differential protection based on the phase angle difference of the time-frequency matrix of a current fault component[J]. Power system protection and control, 2021, 49(23): 44-53.
[17] 欧阳金鑫. 变速恒频风电机组并网故障机理与分析模型研究[D]. 重庆: 重庆大学, 2012.
OUYANG J X.Studies on fault characteristics and analytical models of integrated variable-speed constant-frequency wind power generator[D]. Chongqing: Chongqing University, 2012.
[18] SHI L, ADAM G P, LI R, et al.Control of offshore MMC during asymmetric offshore AC faults for wind power transmission[J]. IEEE journal of emerging and selected topics in power electronics, 2020, 8(2): 1074-1083.
[19] 束洪春. 电力工程信号处理应用[M]. 北京: 科学出版社, 2009.
SHU H C.Application of signal processing in power engineering[M]. Beijing: Science Press, 2009.
[20] DAUBECHIES I, LU J F, WU H T.Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool[J]. Applied and computational harmonic analysis, 2011, 30(2): 243-261.
[21] 喻敏, 王斌, 王文波, 等. 基于同步挤压小波变换的电力系统时变谐波检测[J]. 电工技术学报, 2017, 32(增刊1): 50-57.
YU M, WANG B, WANG W B, et al.Power system time-varying transient harmonics detection based on SWT[J]. Transactions of China Electrotechnical Society, 2017, 32(S1): 50-57.
[22] 徐政, 肖晃庆, 张哲任, 等. 柔性直流输电系统[M]. 2版. 北京: 机械工业出版社, 2017.
XU Z, XIAO H Q, ZHANG Z R, et al.Flexible DC transmission system[M]. 2nd ed. Beijing: China Machine Press, 2017.

基金

国家自然科学基金(52037003); 云南省重大专项(202002AF080001)

PDF(2620 KB)

Accesses

Citation

Detail

段落导航
相关文章

/