双馈虚拟同步机快速励磁控制和功角补偿策略

胡志帅, 任永峰, 孟庆天, 韩俊飞, 陈建, 贺彬

太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 134-142.

PDF(5246 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(5246 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 134-142. DOI: 10.19912/j.0254-0096.tynxb.2022-1417

双馈虚拟同步机快速励磁控制和功角补偿策略

  • 胡志帅1, 任永峰1, 孟庆天1,2, 韩俊飞2, 陈建1, 贺彬1
作者信息 +

RAPID EXCITATION CONTROL AND POWER ANGLE COMPENSATION STRATEGY FOR DOUBLE-FED VIRTUAL SYNCHRONOUS GENERATOR

  • Hu Zhishuai1, Ren Yongfeng1, Meng Qingtian1,2, Han Junfei1, Chen Jian1, He Bin1
Author information +
文章历史 +

摘要

针对以激磁电势为目标控制电压的双馈虚拟同步发电机策略下运行功角大而带来的功率耦合问题,提出采用快速励磁控制消除功角扰动对无功控制的影响,采用功角补偿消除激磁电势扰动对功角有功控制的影响的功率解耦方案。在分析双馈电机数学模型及双馈虚拟同步机整体控制策略的基础上,构建计及无功控制环节的双馈虚拟同步机小信号模型。通过分析无功环节PI控制器参数对功角稳定性的影响,设计快速励磁控制策略。通过分析无功扰动与功角变化的关系,确定功角补偿传递函数。设定风速扰动、电网频率扰动和电网电压扰动3种不同工况进行验证。结果表明:所提控制策略可有效避免双馈虚拟同步机大功角运行时有功功率控制和无功功率控制间的相互影响,实现功率解耦。

Abstract

Under the strategy of the doubly-fed virtual synchronous generator with the excitation voltage as the target control voltage, the power angle of the system is large, which will cause the power coupling problem. The rapid reactive power control strategy and power angle compensation synergy are proposed to eliminate power coupling. The rapid excitation control strategy can eliminate the influence of the power angle disturbance on the reactive power, and the power angle compensation strategy can eliminate the influence of the exciting voltage disturbance on the active power. On the basis of analyzing the mathematical model of the doubly-fed machine and designing the overall control strategy of the doubly fed virtual synchronous generator, a small signal model including reactive power control link is constructed. The rapid excitation control is designed by analyzing the influence of the reactive power PI controller parameters on the power angle stability. The angle compensation strategy is designed based on the analysis of the relationship between reactive power disturbance and power angle variation. The simulation is conducted under three different working conditions: wind speed disturbance, grid frequency disturbance and grid voltage disturbance. The results reveal that the proposed control strategy can effectively avoid the interaction influence between active power control and reactive power control when the doubly-fed virtual synchronous generator is running under high power angle condition.

关键词

风力机 / 电机控制 / 感应电机 / 虚拟同步发电机 / 功率解耦 / 小信号模型

Key words

wind turbines / electric machine control / induction machine / virtual synchronous generator / power decoupling / small signal model

引用本文

导出引用
胡志帅, 任永峰, 孟庆天, 韩俊飞, 陈建, 贺彬. 双馈虚拟同步机快速励磁控制和功角补偿策略[J]. 太阳能学报. 2024, 45(1): 134-142 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1417
Hu Zhishuai, Ren Yongfeng, Meng Qingtian, Han Junfei, Chen Jian, He Bin. RAPID EXCITATION CONTROL AND POWER ANGLE COMPENSATION STRATEGY FOR DOUBLE-FED VIRTUAL SYNCHRONOUS GENERATOR[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 134-142 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1417
中图分类号: TM614   

参考文献

[1] 柴建云, 赵杨阳, 孙旭东, 等. 虚拟同步发电机技术在风力发电系统中的应用与展望[J]. 电力系统自动化, 2018, 42(9): 17-25, 68.
CHAI J Y, ZHAO Y Y, SUN X D, et al.Application and prospect of virtual synchronous generator in wind power generation system[J]. Automation of electric power systems, 2018, 42(9): 17-25, 68.
[2] 任智君, 郭红霞, 杨苹, 等. 含高比例可再生能源配电网灵活资源双层优化配置[J]. 太阳能学报, 2021, 42(9): 33-38.
REN Z J, GUO H X, YANG P, et al.Double-layer optimal configuration of flexible resources with high proportion of renewable energy distribution network[J]. Acta energiae solaris sinica, 2021, 42(9): 33-38.
[3] YOO Y, JUNG S, JANG G.Dynamic inertia response support by energy storage system with renewable energy integration substation[J]. Journal of modern power systems and clean energy, 2020, 8(2): 260-266.
[4] 边晓燕, 印良云, 丁炀, 等. 基于DFIG虚拟惯量与下垂控制的微电网调频优化[J]. 太阳能学报, 2021, 42(9): 452-460.
BIAN X Y, YIN L Y, DING Y, et al.Micro-grid frequency modulation optimization based on DFIG virtual inertia and droop control[J]. Acta energiae solaris sinica, 2021, 42(9): 452-460.
[5] 刘洪波, 彭晓宇, 张崇, 等. 风电参与电力系统调频控制策略综述[J]. 电力自动化设备, 2021, 41(11): 81-92.
LIU H B, PENG X Y, ZHANG C, et al.Overview of wind power participating in frequency regulation control strategy for power system[J]. Electric power automation equipment, 2021, 41(11): 81-92.
[6] 李少林, 秦世耀, 王瑞明, 等. 一种双馈风电机组一次调频协调控制策略研究[J]. 太阳能学报, 2020, 41(2): 101-109.
LI S L, QIN S Y, WANG R M, et al.A collaborative control of primary frequency regulation for DFIG-WT[J]. Acta energiae solaris sinica, 2020, 41(2): 101-109.
[7] CHEN P W, QI C C, CHEN X.Virtual inertia estimation method of DFIG-based wind farm with additional frequency control[J]. Journal of modern power systems and clean energy, 2021, 9(5): 1076-1087.
[8] 李少林, 王伟胜, 张兴, 等. 风力发电对系统频率影响及虚拟惯量综合控制[J]. 电力系统自动化, 2019, 43(15): 64-70.
LI S L, WANG W S, ZHANG X, et al.Impact of wind power on power system frequency and combined virtual inertia control[J]. Automation of electric power systems, 2019, 43(15): 64-70.
[9] XIE Z, FENG Y T, MA M Y, et al.An improved virtual inertia control strategy of DFIG-based wind turbines for grid frequency support[J]. IEEE journal of emerging and selected topics in power electronics, 2021, 9(5): 5465-5477.
[10] 孔旻玥, 孙丹, 年珩. 双馈风电机组系统功率响应特性建模方法[J]. 电力系统自动化, 2022, 46(2): 118-125.
KONG M Y, SUN D, NIAN H.Modeling method for power response characteristics of DFIG-based wind turbine system[J]. Automation of electric power systems, 2022, 46(2): 118-125.
[11] 谢震, 许可宝, 秦世耀, 等. 基于电压源型和电流源型双馈风电机组稳定性对比分析[J]. 电网技术, 2021, 45(5): 1724-1735.
XIE Z, XU K B, QIN S Y, et al.Comparative analysis of doubly-fed wind turbine stability based on voltage source and current source[J]. Power system technology, 2021, 45(5): 1724-1735.
[12] CHEN M, ZHOU D, BLAABJERG F.Modelling, implementation, and assessment of virtual synchronous generator in power systems[J]. Journal of modern power systems and clean energy, 2020, 8(3): 399-411.
[13] 李明烜, 王跃, 徐宁一, 等. 松弛小功角约束条件的虚拟同步发电机功率解耦策略[J]. 电力系统自动化, 2018, 42(9): 59-68.
LI M X, WANG Y, XU N Y, et al.Power decoupling strategy for virtual synchronous generator relaxing condition of small power angle[J]. Automation of electric power systems, 2018, 42(9): 59-68.
[14] ASRARI A, MUSTAFA M, ANSARI M, et al.Impedance analysis of virtual synchronous generator-based vector controlled converters for weak AC grid integration[J]. IEEE transactions on sustainable energy, 2019, 10(3): 1481-1490.
[15] 李武华, 王金华, 杨贺雅, 等. 虚拟同步发电机的功率动态耦合机理及同步频率谐振抑制策略[J]. 中国电机工程学报, 2017, 37(2): 381-391.
LI W H, WANG J H, YANG H Y, et al.Power dynamic coupling mechanism and resonance suppression of synchronous frequency for virtual synchronous generators[J]. Proceedings of the CSEE, 2017, 37(2): 381-391.
[16] 谢震, 孟浩, 张兴, 等. 基于定子虚拟阻抗的双馈风电机组虚拟同步控制策略[J]. 电力系统自动化, 2018, 42(9): 157-163, 187.
XIE Z, MENG H, ZHANG X, et al.Virtual synchronous control strategy of DFIG-based wind turbines based on stator virtual impedance[J]. Automation of electric power systems, 2018, 42(9): 157-163, 187.
[17] ZHANG P, ZHAO H Y, CAI H Y, et al.Power decoupling strategy based on ‘virtual negative resistor' for inverters in low-voltage microgrids[J]. IET power electronics, 2016, 9(5): 1037-1044.
[18] WEN T L, ZOU X D, ZHU D H, et al.Comprehensive perspective on virtual inductor for improved power decoupling of virtual synchronous generator control[J]. IET renewable power generation, 2020, 14(4): 485-494.
[19] 屈子森, 蔡云旖, 杨欢, 等. 基于自适应虚拟阻抗的虚拟同步机功率解耦控制策略[J]. 电力系统自动化, 2018, 42(17): 58-66.
QU Z S, CAI Y Y, YANG H, et al.Strategy of power decoupling control for virtual synchronous generator based on adaptive virtual impedances[J]. Automation of electric power systems, 2018, 42(17): 58-66.
[20] WANG S, HU J B, YUAN X M.Virtual synchronous control for grid-connected DFIG-based wind turbines[J]. IEEE journal of emerging and selected topics in power electronics, 2015, 3(4): 932-944.
[21] 姜静雅, 王玮, 吴学智, 等. 基于自适应无功功率补偿的虚拟同步机功率解耦策略[J]. 电工技术学报, 2020, 35(13): 2747-2756.
JIANG J Y, WANG W, WU X Z, et al.Power decoupling strategy in virtual synchronous generator based on adaptive reactive power compensation[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2747-2756.

基金

国家自然科学基金(52367022; 51967016); 内蒙古自治区重点研发和成果转化项目(2023YFHH0077; 2023YFHH0097)

PDF(5246 KB)

Accesses

Citation

Detail

段落导航
相关文章

/