基于电-热特性的质子交换膜电解槽模型研究进展

闫涛, 房凯, 惠东

太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 466-474.

PDF(1799 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1799 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 466-474. DOI: 10.19912/j.0254-0096.tynxb.2022-1425

基于电-热特性的质子交换膜电解槽模型研究进展

  • 闫涛, 房凯, 惠东
作者信息 +

RESEARCH PROGRESS OF PROTON EXCHANGE MEMBRANE ELECTROLYZER MODEL BASED ON ELECTRICAL-THERMAL CHARACTERISTICS

  • Yan Tao, Fang Kai, Hui Dong
Author information +
文章历史 +

摘要

“电-氢”转换为能源领域低碳转型提供了一种新型、绿色、高效的解决方案,质子交换膜电解槽因具备产氢纯度高、制氢效率优、高度集成化以及与波动性电源耦合程度好等优点而备受关注,模型构建是对其机理研究、特性分析、系统运行控制模拟的重要手段。基于质子交换膜电解槽电化学特性和热传输特性,对国内外已有的质子交换膜电解槽电化学模型和热传输模型建模方法进行综述,并简要分析多物理场耦合模型研究进展,对未来质子交换膜电解槽建模研究发展方向进行展望。

Abstract

“Electricity-hydrogen” conversion provides a new green and efficient solution for the low-carbon transition in the energy field. The proton exchange membrane electrolyzer has the advantages of high hydrogen production purity, excellent hydrogen production efficiency, high integration and coupling with fluctuating power sources. Model construction is an important means for its mechanism research, characteristic analysis, and system operation control simulation. Based on the electrochemical characteristics and heat transport characteristics of proton exchange membrane electrolyzers, this paper reviews the existing domestic and foreign methods for modeling the electrochemical models and heat transport models of proton exchange membrane electrolyzers, and briefly analyzes the research progress of multi-physics coupling models, and prospect the future development direction of proton exchange membrane electrolyzer modeling research.

关键词

制氢 / 电化学 / 热传输 / 质子交换膜电解槽

Key words

hydrogen production / electrochemical / heat transport / proton exchange membrane electrolyzer

引用本文

导出引用
闫涛, 房凯, 惠东. 基于电-热特性的质子交换膜电解槽模型研究进展[J]. 太阳能学报. 2024, 45(1): 466-474 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1425
Yan Tao, Fang Kai, Hui Dong. RESEARCH PROGRESS OF PROTON EXCHANGE MEMBRANE ELECTROLYZER MODEL BASED ON ELECTRICAL-THERMAL CHARACTERISTICS[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 466-474 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1425
中图分类号: TM911.48   

参考文献

[1] 李建林, 李光辉, 马速良, 等. 氢能储运技术现状及其在电力系统中的典型应用[J]. 现代电力, 2021, 38(5): 535-545.
LI J L, LI G H, MA S L, et al.An overview on hydrogen energy storage and transportation technology and its typical application in power system[J]. Modern electric power, 2021, 38(5): 535-545.
[2] 李建林, 张则栋, 李光辉, 等. 基于模型层级分析的质子交换膜电解槽建模研究进展[J]. 高电压技术, 2023, 49(3): 1105-1117.
LI J L, ZHANG Z D, LI G H, et al.Research on modeling of proton exchange membrane electrolyzer based on model hierarchical analysis[J]. High voltage engineering, 2023, 49(3): 1105-1117.
[3] 李建林, 梁忠豪, 李光辉, 等. 太阳能制氢关键技术研究[J]. 太阳能学报, 2022, 43(3): 2-11.
LI J L, LIANG Z H, LI G H, et al.Analysis of key technologies for solar hydrogen production[J]. Acta energiae solaris sinica, 2022, 43(3): 2-11.
[4] 马晓锋, 张舒涵, 何勇, 等. PEM电解水制氢技术的研究现状与应用展望[J]. 太阳能学报, 2022, 43(6): 420-427.
MA X F, ZHANG S H, HE Y, et al.Research status and application prospect of pem electrolysis water technology for hydrogen production[J]. Acta energiae solaris sinica, 2022, 43(6): 420-427.
[5] 李建林, 赵文鼎, 梁忠豪, 等. 光储一体化耦合制氢系统控制策略及仿真分析[J]. 热力发电, 2022, 51(11): 148-155.
LI J L, ZHAO W D, LIANG Z H, et al.Control strategy and simulation analysis of coupled optical storage systems for hydrogen production[J]. Thermal power generation, 2022, 51(11): 148-155.
[6] 李亮荣, 彭建, 付兵, 等. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析[J]. 太阳能学报, 2022, 43(6): 508-520.
LI L R, PENG J, FU B, et al.Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision[J]. Acta energiae solaris sinica, 2022, 43(6): 508-520.
[7] SCHALENBACH M, CARMO M, FRITZ D L, et al.Pressurized PEM water electrolysis: efficiency and gas crossover[J]. International journal of hydrogen energy, 2013, 38(35): 14921-14933.
[8] CARMO M, FRITZ D L, MERGEL J, et al.A comprehensive review on PEM water electrolysis[J]. International journal of hydrogen energy, 2013, 38(12): 4901-4934.
[9] OLIVIER P, BOURASSEAU C, BOUAMAMA P B.Low-temperature electrolysis system modelling: a review[J]. Renewable and sustainable energy reviews, 2017, 78: 280-300.
[10] YODWONG B, GUILBERT D, PHATTANASAK M, et al.Proton exchange membrane electrolyzer modeling for power electronics control: a short review[J]. C:journal of carbon research, 2020, 6(2): 29.
[11] AUBRAS F, DESEURE J, KADJO J J A, et al. Two-dimensional model of low-pressure PEM electrolyser: two-phase flow regime, electrochemical modelling and experimental validation[J]. International journal of hydrogen energy, 2017, 42(42): 26203-26216.
[12] GÖRGÜN H. Dynamic modelling of a proton exchange membrane (PEM) electrolyzer[J]. International journal of hydrogen energy, 2006, 31(1): 29-38.
[13] SANTARELLI M, MEDINA P, CALÌ M.Fitting regression model and experimental validation for a high-pressure PEM electrolyzer[J]. International journal of hydrogen energy, 2009, 34(6): 2519-2530.
[14] GARCÍA-VALVERDE R, ESPINOSA N, URBINA A. Simple PEM water electrolyser model and experimental validation[J]. International journal of hydrogen energy, 2012, 37(2): 1927-1938.
[15] ONDA K, MURAKAMI T, HIKOSAKA T, et al.Performance analysis of polymer-electrolyte water electrolysis cell at a small-unit test cell and performance prediction of large stacked cell[J]. Journal of the Electrochemical Society, 2002, 149(8): A1069.
[16] KIM H, PARK M, LEE K S.One-dimensional dynamic modeling of a high-pressure water electrolysis system for hydrogen production[J]. International journal of hydrogen energy, 2013, 38(6): 2596-2609.
[17] DALE N V, MANN M D, SALEHFAR H.Semiempirical model based on thermodynamic principles for determining 6 kW proton exchange membrane electrolyzer stack characteristics[J]. Journal of power sources, 2008, 185(2): 1348-1353.
[18] TJARKS G, GIBELHAUS A, LANZERATH F, et al.Energetically-optimal PEM electrolyzer pressure in power-to-gas plants[J]. Applied energy, 2018, 218: 192-198.
[19] RUUSKANEN V, KOPONEN J, SILLANPÄÄ T, et al.Design and implementation of a power-hardware-in-loop simulator for water electrolysis emulation[J]. Renewable energy, 2018, 119: 106-115.
[20] RUUSKANEN V, KOPONEN J, KOSONEN A, et al.Power quality estimation of water electrolyzers based on current and voltage measurements[J]. Journal of power sources, 2020, 450: 227603.
[21] TOGHYANI S, FAKHRADINI S, AFSHARI E, et al.Optimization of operating parameters of a polymer exchange membrane electrolyzer[J]. International journal of hydrogen energy, 2019, 44(13): 6403-6414.
[22] HAN B, MO J K, KANG Z Y, et al.Effects of membrane electrode assembly properties on two-phase transport and performance in proton exchange membrane electrolyzer cells[J]. Electrochimica acta, 2016, 188: 317-326.
[23] RUUSKANEN V, KOPONEN J, HUOMAN K, et al.PEM water electrolyzer model for a power-hardware-in-loop simulator[J]. International journal of hydrogen energy, 2017, 42(16): 10775-10784.
[24] AWASTHI A, SCOTT K, BASU S.Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production[J]. International journal of hydrogen energy, 2011, 36(22): 14779-14786.
[25] LEBBAL M E, LECŒUCHE S. Identification and monitoring of a PEM electrolyser based on dynamical modelling[J]. International journal of hydrogen energy, 2009, 34(14): 5992-5999.
[26] AGBLI K S, PÉRA M C, HISSEL D, et al. Multiphysics simulation of a PEM electrolyser: energetic Macroscopic Representation approach[J]. International journal of hydrogen energy, 2011, 36(2): 1382-1398.
[27] BESSARABOV D, WANG H J, HUI L, et al.PEM electrolysis for hydrogen production[M]. Boca Raton: CRC Press, 2016.
[28] MARANGIO F, SANTARELLI M, CALÌ M.Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production[J]. International journal of hydrogen energy, 2009, 34(3): 1143-1158.
[29] CHOI P, BESSARABOV D G, DATTA R.A simple model for solid polymer electrolyte (SPE) water electrolysis[J]. Solid state ionics, 2004, 175(1/2/3/4): 535-539.
[30] RAPHAËL C, RAISON B. Low emission power generation technologies and energy management[M]. London: ISTE Ltd/John Wiley & Sons, 2009.
[31] NI M, LEUNG M K H, LEUNG D Y C. Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant[J]. Energy conversion and management, 2008, 49(10): 2748-2756.
[32] ZENYUK I V, PARKINSON D Y, CONNOLLY L G, et al.Gas-diffusion-layer structural properties under compression via X-ray tomography[J]. Journal of power sources, 2016, 328: 364-376.
[33] MA Z W, WITTEMAN L, WRUBEL J A, et al.A comprehensive modeling method for proton exchange membrane electrolyzer development[J]. International journal of hydrogen energy, 2021, 46(34): 17627-17643.
[34] HAN B, STEEN S M, MO J K, et al.Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy[J]. International journal of hydrogen energy, 2015, 40(22): 7006-7016.
[35] HARRISON K W, HERNÁNDEZ-PACHECO E, MANN M, et al. Semiempirical model for determining PEM electrolyzer stack characteristics[J]. Journal of fuel cell science and technology, 2006, 3(2): 220-223.
[36] ULLEBERG Ø.Stand-alone power systems for the future: optimal design, operation & control of solar-hydrogen energy systems[R]. NEI-NO-1094, 1998.
[37] ULLEBERG Ø.Modeling of advanced alkaline electrolyzers: a system simulation approach[J]. International journal of hydrogen energy, 2003, 28(1): 21-33.
[38] SÁNCHEZ M, AMORES E, RODRÍGUEZ L, et al. Semi-empirical model and experimental validation for the performance evaluation of a 15 kW alkaline water electrolyzer[J]. International journal of hydrogen energy, 2018, 43(45): 20332-20345.
[39] ATLAM O, KOLHE M.Equivalent electrical model for a proton exchange membrane (PEM) electrolyser[J]. Energy conversion and management, 2011, 52(8/9): 2952-2957.
[40] SOSSAN F, BINDNER H, MADSEN H, et al.A model predictive control strategy for the space heating of a smart building including cogeneration of a fuel cell-electrolyzer system[J]. International journal of electrical power & energy systems, 2014, 62: 879-889.
[41] XU Y F, ZHANG G B, WU L Z, et al.A 3-D multiphase model of proton exchange membrane electrolyzer based on open-source CFD[J]. Digital chemical engineering, 2021, 1: 100004.
[42] NIE J H, CHEN Y, COHEN S, et al.Numerical and experimental study of three-dimensional fluid flow in the bipolar plate of a PEM electrolysis cell[J]. International journal of thermal sciences, 2009, 48(10): 1914-1922.
[43] OLIVIER P, BOURASSEAU C, BOUAMAMA B.Modelling, simulation and analysis of a PEM electrolysis system[J]. IFAC-PapersOnLine, 2016, 49(12): 1014-1019.

基金

2022年度新能源与储能运行控制国家重点实验室开放基金(DG80-22-001)

PDF(1799 KB)

Accesses

Citation

Detail

段落导航
相关文章

/