基于CEEMDAN-AsyHyperBand-MultiTCN的短期风电功率预测

刘凡, 李捍东, 覃涛

太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 151-158.

PDF(3836 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3836 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 151-158. DOI: 10.19912/j.0254-0096.tynxb.2022-1427

基于CEEMDAN-AsyHyperBand-MultiTCN的短期风电功率预测

  • 刘凡, 李捍东, 覃涛
作者信息 +

SHORT-TERM WIND POWER PREDICTION BASED ON CEEMDAN-AsyHyperBand-MultiTCN

  • Liu Fan, Li Handong, Qin Tao
Author information +
文章历史 +

摘要

为减少风电功率短期预测误差,提高风电利用效率,提出一种基于经验模态分解和异步超参数优化的多层时间卷积网络(CEEMDAN-AsyHyperBand-MultiTCN)的短期风电功率预测方法。首先,确定序列分量的数量,并使用自适应噪声完备集合经验模态分解(CEEMDAN)对原始风电功率进行分解,构成训练数据集。其次,使用深度残差级联(DRnet)构建多层的时间卷积网络(TCN),并使用AsyHyperband算法对序列分量模型进行超参数寻优。最后,对序列分量分别进行预测,重构预测结果得到预测值。实验表明,该文提出的方法相比于其他方法能有效降低风电功率预测误差。

Abstract

In order to improve the utilization efficiency and accuracy of short-term wind power, this paper proposes a method based on complete ensemble empirical mode decomposition with adaptive noise and multi-layer temporal convolution networks (CEEMDAN-AsyHyperBand-MultiTCN). Firstly, determine the number of sequence components, and then decompose the time series of wind power as training dataset using CEEMDAN. Secondly, apply the Deep Residual Cascade (DRnet) to build a multi-layer Temporal Convolutional Networks (TCN) model for each component, and the AsyHyperband algorithm is used to optimize the hyperparameters for the components model. Finally, the final prediction result is obtained after reconstructing the prediction results of each component model. The experimental results show that the proposed method can effectively reduce the wind power prediction error compared with other methods.

关键词

风电功率 / 预测 / 神经网络 / 多层 / 集成经验模态分解 / 超参数搜索

Key words

wind power / forecasting / neural networks / multilayers / complete ensemble empirical mode decomposition with adaptive noise / hyperparameter search

引用本文

导出引用
刘凡, 李捍东, 覃涛. 基于CEEMDAN-AsyHyperBand-MultiTCN的短期风电功率预测[J]. 太阳能学报. 2024, 45(1): 151-158 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1427
Liu Fan, Li Handong, Qin Tao. SHORT-TERM WIND POWER PREDICTION BASED ON CEEMDAN-AsyHyperBand-MultiTCN[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 151-158 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1427
中图分类号: TM614   

参考文献

[1] 唐新姿, 顾能伟, 黄轩晴, 等. 风电功率短期预测技术研究进展[J]. 机械工程学报, 2022, 58(12): 213-236.
TANG X Z, GU N W, HUANG X Q, et al.Progress on short term wind power forecasting technology[J]. Journal of mechanical engineering, 2022,58(12): 213-236.
[2] AZIZ EZZAT A.Turbine-specific short-term wind speed forecasting considering within-farm wind field dependencies and fluctuations[J]. Applied energy, 2020, 269: 115034.
[3] HU Y X, CHEN L.A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and differential evolution algorithm[J]. Energy conversion and management, 2018, 173: 123-142.
[4] CATALÃO J P S, POUSINHO H M I, MENDES V M F. Short-term wind power forecasting in Portugal by neural networks and wavelet transform[J]. Renewable energy, 2011, 36(4): 1245-1251.
[5] WU Q Y, GUAN F, LYU C, et al.Ultra-short-term multi-step wind power forecasting based on CNN-LSTM[J]. IET renewable power generation, 2021, 15(5): 1019-1029.
[6] AGGA A, ABBOU A, LABBADI M, et al.CNN-LSTM: an efficient hybrid deep learning architecture for predicting short-term photovoltaic power production[J]. Electric power systems research, 2022, 208: 107908.
[7] JAHANGIR H, TAYARANI H, GOUGHERI S S, et al.Deep learning-based forecasting approach in smart grids with microclustering and bidirectional LSTM network[J]. IEEE transactions on industrial electronics, 2021, 68(9): 8298-8309.
[8] KO M S, LEE K, KIM J K, et al.Deep concatenated residual network with bidirectional LSTM for one-hour-ahead wind power forecasting[C]//2022 IEEE Power & Energy Society General Meeting (PESGM). Denver, CO, USA, 2022: 1.
[9] HU J M, LUO Q X, TANG J W, et al.Conformalized temporal convolutional quantile regression networks for wind power interval forecasting[J]. Energy, 2022, 248: 123497.
[10] 赵凌云, 刘友波, 沈晓东, 等. 基于CEEMDAN和改进时间卷积网络的短期风电功率预测模型[J]. 电力系统保护与控制, 2022, 50(1): 42-50.
ZHAO L Y,LIU Y B,SHEN X D,et al.Short-term wind power prediction model based on CEEMDAN and an improved time convolutional network[J]. Power system protection and control, 2022, 50(1): 42-50.
[11] FAN J, ZHANG K, HUANG Y P, et al.Parallel spatio-temporal attention-based TCN for multivariate time series prediction[J]. Neural computing and applications, 2023, 35(18): 13109-13118.
[12] 谢丽蓉, 王斌, 包洪印, 等. 基于EEMD-WOA-LSSVM的超短期风电功率预测[J]. 太阳能学报, 2021, 42(7): 290-296.
XIE L R,WANG B,BAO H Y,et al.Super-short-term wind power forecasting based on EEMD-WOA-LSSVM[J]. Acta energiae solaris sinica, 2021, 42(7): 290-296.
[13] 庄跃生, 林珊玲, 林志贤, 等. 生成对抗网络在数据异常检测中的研究[J]. 计算机工程与应用, 2022, 58(4): 143-149.
ZHUANG Y S,LIN S L,LIN Z X,et al.Study on generative adversarial network for data anomaly detection[J]. Computer engineering and applications, 2022, 58(4): 143-149.
[14] 张亚刚, 赵云鹏, 王思祺. 基于EVMD和布谷鸟算法的短期风功率区间预测[J]. 太阳能学报, 2022, 43(8): 292-299.
ZHANG Y G,ZHAO Y P,WANG S Q.Short term wind power interval prediction based on EVMD and cuckoo algorithm[J]. Acta energiae solaris sinica, 2022, 43(8): 292-299.
[15] 舒畅, 金潇, 李自品, 等. 基于CEEMDAN的配电变压器放电故障噪声诊断方法[J]. 高电压技术, 2018, 44(8): 2603-2611.
SHU C,JIN X,LI Z P,et al.Noise diagnosis method of distribution transformer discharge fault based on CEEMDAN[J]. High voltage engineering, 2018, 44(8): 2603-2611.
[16] SZEGEDY C, IOFFE S, VANHOUCKE V, et al.Inception-v4, inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence. San Francisco, USA,2017: 4278-4284.
[17] NWANKPA C, IJOMAH W, GACHAGAN A, et al. Activation functions: comparison of trends in practice and research for deep learning[EB/OL].2018: arXiv: 1811.03378. http://arxiv.org/abs/1811.03378. PDF.
[18] PEDAMONTI D. Comparison of non-linear activation functions for deep neural networks on MNIST classification task[EB/OL].2018: arXiv: 1804.02763. http://arxiv.org/abs/1804.02763. PDF.
[19] BRUNINX K, DELARUE E.A statistical description of the error on wind power forecasts for probabilistic reserve sizing[J]. IEEE transactions on sustainable energy, 2014, 5(3): 995-1002.
[20] WAN C, XU Z, PINSON P, et al.Probabilistic forecasting of wind power generation using extreme learning machine[J]. IEEE transactions on power systems, 2014, 29(3): 1033-1044.
[21] 蒋云良, 赵康, 曹军杰, 等. 基于种群演化的超参数异步并行搜索[J]. 控制与决策, 2021, 36(8): 1825-1833.
JIANG Y L,ZHAO K,CAO J J,et al.Asynchronous parallel hyperparameter search with population evolution[J]. Control and decision, 2021, 36(8): 1825-1833.
[22] 程启明, 陈路, 程尹曼, 等. 基于EEMD和LS-SVM模型的风电功率短期预测方法[J]. 电力自动化设备, 2018, 38(5): 27-35.
CHENG Q M, CHEN L, CHENG Y M, et al.Short-term wind power forecasting method based on EEMD and LS-SVM model[J]. Electric power automation equipment, 2018, 38(5): 27-35.
[23] GAO B X, HUANG X Q, SHI J S, et al.Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks[J]. Renewable energy, 2020, 162: 1665-1683.

基金

国家自然科学基金(52167007)

PDF(3836 KB)

Accesses

Citation

Detail

段落导航
相关文章

/