基于混合分解和PCG-BiLSTM的风速短期预测

毕贵红, 黄泽, 赵四洪, 谢旭, 陈仕龙, 骆钊

太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 159-170.

PDF(2889 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2889 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 159-170. DOI: 10.19912/j.0254-0096.tynxb.2022-1432

基于混合分解和PCG-BiLSTM的风速短期预测

  • 毕贵红1, 黄泽1, 赵四洪1, 谢旭2, 陈仕龙1, 骆钊1
作者信息 +

SHORT-TERM PREDICTION OF WIND SPEED BASED ON HYBRID DECOMPOSITION AND PCG-BiLSTM

  • Bi Guihong1, Huang Ze1, Zhao Sihong1, Xie Xu2, Chen Shilong1, Luo Zhao1
Author information +
文章历史 +

摘要

为降低风速的随机性对风力发电的影响,提高风速短期预测的精准度,提出一种基于混合分解、双通道输入、多分支PCG-BiLSTM深度学习模型的短期风速预测方法。首先,将全年风速数据分为春、夏、秋、冬4个季度,选取春季作为主要实验对象;其次,利用奇异谱分解(SSD)和变分模态分解(VMD)以降低原始春季风速数据复杂度,生成具有不同模态且复杂度低的子分量,两种不同模式子分量组合为混合分量,实现不同模式分解算法的优势互补;最后,将混合分量以双通道的形式输入到多分支PCG-BiLSTM深度学习模型中,其模型的每个分支由卷积神经网络(CNN)与门控循环单元(GRU)并联组成时空特征提取模块,用于提取两种分解分量组合的混合分量的时空特征,各分支提取对应混合分量的时空特征经聚合后再由双向长短期记忆网络(BiLSTM)进一步提取风速信号的正向和反向双向波动规律,进而得到最终的风速预测结果。多组实验结果表明:提出的组合预测方法在短期风速预测中具有较高的精度和泛化能力,优于其他传统预测方法。

Abstract

In order to reduce the impact of the randomness of wind speed on wind power generation and improve the accuracy of wind speed short-term prediction. In this paper, a short-term wind speed prediction method based on hybrid decomposition, two-channel input and multi-branch PCG-BiLSTM deep learning model is proposed. Firstly, the annual wind speed data were divided into four seasons: spring, summer, autumn and winter, and spring was selected as the main experimental subjects. Secondly, singular spectrum decomposition (SSD) and variational modal decomposition (VMD) are used to reduce the complexity of the original spring wind speed data, generate subcomponents with different modalities and low complexity, and the two different modal subcomponents are combined into a mixed component to achieve the complementarity of the advantages of different mode decomposition algorithms. Finally, the mixed components are input to the multi-branch PCG-BiLSTM deep learning model in the form of two channels, and each branch of the model consists of a parallel convolutional neural network (CNN) and a gated recurrent unit (GRU) to obtained a spatio-temporal feature extraction module for extracting the spatio-temporal features of the mixed components of the combination of two decomposition components, and the spatio-temporal features of the corresponding mixed components extracted by each branch are aggregated and then further extracted by a bidirectional long short-term memory network (BiLSTM) for the forward and reverse bi-directional fluctuation regularity of the wind speed signals, and then the final wind speed prediction results are obtained. Several sets of experimental results show that the combined prediction method proposed in this paper has high accuracy and generalization ability in short-term wind speed prediction, which is better than other traditional prediction methods.

关键词

风速 / 预测 / 深度学习 / 混合分解 / 并联网络

Key words

wind speed / prediction / deep learning / hybrid decomposition / parallel network

引用本文

导出引用
毕贵红, 黄泽, 赵四洪, 谢旭, 陈仕龙, 骆钊. 基于混合分解和PCG-BiLSTM的风速短期预测[J]. 太阳能学报. 2024, 45(1): 159-170 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1432
Bi Guihong, Huang Ze, Zhao Sihong, Xie Xu, Chen Shilong, Luo Zhao. SHORT-TERM PREDICTION OF WIND SPEED BASED ON HYBRID DECOMPOSITION AND PCG-BiLSTM[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 159-170 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1432
中图分类号: TM614   

参考文献

[1] 毕贵红, 赵鑫, 李璐, 等. 双模式分解CNN-LSTM集成的短期风速预测模型[J]. 太阳能学报, 2023, 44(3): 191-197.
BI G H, ZHAO X, LI L, et al.Dual-mode decomposition CNN-LSTM integrated short-term wind speed forecasting model[J]. Acta energiae solaris sinica, 2023, 44(3): 191-197.
[2] 向玲, 刘佳宁, 苏浩, 等. 基于CEEMDAN二次分解和LSTM的风速多步预测研究[J]. 太阳能学报, 2022, 43(8): 334-339.
XIANG L, LIU J N, SU H, et al.Research on multi-step wind speed forecast based on CEEMDAN secondary decomposition and LSTM[J]. Acta energiae solaris sinica, 2022, 43(8): 334-339.
[3] 李嘉文, 盛德仁, 李蔚, 等. 基于多目标优化和误差修正的短期风速预测[J]. 太阳能学报, 2022, 43(8): 273-280.
LI J W, SHENG D R, LI W, et al.Short-term wind speed prediction based on multi-objective optimization and error correction[J]. Acta energiae solaris sinica, 2022, 43(8): 273-280.
[4] 张董极, 肖琴. 基于复杂网络的风速预测新方法[J].太阳能学报, 2023, 44(3): 90-96.
ZHANG D J, XIAO Q.A new method of wind speed prediction based on complex network[J]. Acta energiae solaris sinica, 2023, 44(3): 90-96.
[5] 冉靖, 张智刚, 梁志峰, 等. 风电场风速和发电功率预测方法综述[J]. 数理统计与管理, 2020, 39(6): 1045-1059.
RAN J, ZHANG Z G, LIANG Z F, et al.Review of wind speed and wind power prediction methods[J]. Journal of applied statistics and management, 2020, 39(6): 1045-1059.
[6] ZHANG S H, WANG C, LIAO P, et al.Wind speed forecasting based on model selection, fuzzy cluster, and multi-objective algorithm and wind energy simulation by Betz's theory[J]. Expert systems with applications, 2022, 193: 116509.
[7] CHEN N, SUN H X, ZHANG Q, et al.A short-term wind speed forecasting model based on EMD/CEEMD and ARIMA-SVM algorithms[J]. Applied sciences, 2022, 12(12): 6085.
[8] MI X W, LIU H, LI Y F.Wind speed prediction model using singular spectrum analysis, empirical mode decomposition and convolutional support vector machine[J]. Energy conversion and management, 2019, 180: 196-205.
[9] LI D, JIANG F X, CHEN M, et al.Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks[J]. Energy, 2022, 238: 121981.
[10] ZHANG S, CHEN Y, XIAO J H, et al.Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism[J]. Renewable energy, 2021, 174: 688-704.
[11] GAO B X, HUANG X Q, SHI J S, et al.Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks[J]. Renewable energy, 2020, 162: 1665-1683.
[12] 毕贵红, 赵鑫, 陈臣鹏, 等. 基于多通道输入和PCNN-BiLSTM的光伏发电功率超短期预测[J]. 电网技术, 2022, 46(9): 3463-3476.
BI G H, ZHAO X, CHEN C P, et al.Ultra-short-term prediction of photovoltaic power generation based on multi-channel input and PCNN-BiLSTM[J]. Power system technology, 2022, 46(9): 3463-3476.
[13] 沈银, 席燕辉, 陈子璇. 基于多通道卷积双向长短时记忆网络的输电线故障分类[J]. 电力系统保护与控制, 2022, 50(3): 114-120.
SHEN Y, XI Y H, CHEN Z X.Transmission line fault classification based on MCCNN-BiLSTM[J]. Power system protection and control, 2022, 50(3): 114-120.
[14] 吴迪, 王梓宇, 赵伟超. ELMo-CNN-BiGRU双通道文本情感分类模型[J]. 计算机工程, 2022, 48(8): 105-112.
WU D, WANG Z Y, ZHAO W C.ELMo-CNN-BiGRU dual-channel text sentiment classification model[J]. Computer engineering, 2022, 48(8): 105-112.
[15] TANG Y G, YANG K, ZHANG S J, et al.Photovoltaic power forecasting: a hybrid deep learning model incorporating transfer learning strategy[J]. Renewable and sustainable energy reviews, 2022, 162: 112473.
[16] 谢乐, 仇炜, 李振伟, 等. 基于变分模态分解和门控循环单元神经网络的变压器油中溶解气体预测模型[J]. 高电压技术, 2022, 48(2): 653-660.
XIE L, QIU W, LI Z W, et al.Prediction model of dissolved gas in transformer oil based on variational modal decomposition and recurrent neural network with gated recurrent unit[J]. High voltage engineering, 2022, 48(2): 653-660.
[17] 刘树鑫, 高士珍, 刘洋, 等. 基于LSTM的交流接触器剩余寿命预测[J]. 高电压技术, 2022, 48(8): 3210-3220.
LIU S X, GAO S Z, LIU Y, et al.Residual life prediction of AC contactor based on long short-term memory[J]. High voltage engineering, 2022, 48(8): 3210-3220.
[18] 宋霖, 宿磊, 李可, 等. 基于SSD和1DCNN的滚动轴承故障诊断方法[J]. 华中科技大学学报(自然科学版), 2020, 48(12): 38-43.
SONG L, SU L, LI K, et al.Fault diagnosis method of rolling bearings based on SSD and 1DCNN[J]. Journal of Huazhong University of Science and Technology (natural science edition), 2020, 48(12): 38-43.
[19] 孙景云, 赵盼盼, 丁毅. 基于样本熵重构和PSO优化算法的人民币汇率预测[J]. 数学的实践与认识, 2021, 51(19): 70-83.
SUN J Y,ZHAO P P,DING Y.RMB exchange rate prediction based on sample entropy reconstruction and PSO optimization algorithm[J]. Mathematics in practice and theory, 2021, 51(19): 70-83.
[20] SPRINGENBERG J T, DOSOVITSKIY A, BROX T, et al.Striving for simplicity: the all convolutional net[C]//3rd International Conference on Learning Representations. San Diego: ICLR, 2015.

基金

国家自然科学基金(51907084)

PDF(2889 KB)

Accesses

Citation

Detail

段落导航
相关文章

/