黄土地基中能量桩群桩承载变形性状模型试验

曹卫平, 李庆, 赵敏, 李清源, 罗龙平

太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 415-422.

PDF(2406 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2406 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 415-422. DOI: 10.19912/j.0254-0096.tynxb.2022-1444

黄土地基中能量桩群桩承载变形性状模型试验

  • 曹卫平1, 李庆1, 赵敏2, 李清源1, 罗龙平1
作者信息 +

MODEL TEST ON BEARING DEFORMATION BEHAVIOR OF ENERGY PILE GROUPS IN LOESS SOILS

  • Cao Weiping1, Li Qing1, Zhao Min2, Li Qingyuan1, Luo Longping1
Author information +
文章历史 +

摘要

基于室内缩尺试验研究了含能量桩群桩在4次冷热循环过程中的桩身热力学特性及桩基承载变形特性变化规律,分析冷热循环对桩土温度、承台沉降、桩顶荷载及桩身摩阻力的影响。试验结果表明:冷热循环过程中能量桩较浅位置处桩身及桩侧土温度始终高于较深处,热循环过程中能量桩的传热效率高于冷循环过程。冷热循环会使承台顶面的工作荷载及群桩中各基桩的桩顶荷载发生往复变化,相应地引起承台发生往复倾斜,热循环引起的承台倾斜稍大于冷循环。热循环引起的能量桩桩身上部摩阻力为负,下部为正,冷循环时则相反。

Abstract

Based on indoor scaled tests, the thermodynamic characteristics of the pile body and the variation law of the bearing deformation characteristics of the pile foundation under four cycles of cold and hot cycles of energy containing pile groups were studied. The thermal-induced pile-soil temperature, the pile-cap settlement, pile top load, as well as pile skin friction were mainly analyzed. The results show that the temperature in a pile and surrounding soils caused by the cooling-heating cycles at a shallower position below the soil surface is always greater than that at a deeper position. The heat transfer efficiency of the energy pile during heat cycles is higher than in cold cycles. Both the working load applied on the pile cap, and the load on the pile top will also be altered due to the thermal process, which consequently causes the pile cap to be tilted from one direction to another direction. It was also found that the tilting of the cap during the heat cycle is a little more significant than in the cold cycle. The heat cycle-induced skin friction on the upper pile shaft is negative and positive on the lower shaft, and vice versa during the cold cycle.

关键词

能量桩 / 黄土 / 模型试验 / 承载变形性状 / 冷热循环 / 传热效率 / 承台

Key words

energy pile / loess soil / model test / bearing deformation behavior / cooling-heating cycles / heat transfer efficiency / pile cap

引用本文

导出引用
曹卫平, 李庆, 赵敏, 李清源, 罗龙平. 黄土地基中能量桩群桩承载变形性状模型试验[J]. 太阳能学报. 2024, 45(1): 415-422 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1444
Cao Weiping, Li Qing, Zhao Min, Li Qingyuan, Luo Longping. MODEL TEST ON BEARING DEFORMATION BEHAVIOR OF ENERGY PILE GROUPS IN LOESS SOILS[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 415-422 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1444
中图分类号: TU473.1   

参考文献

[1] 杨涛, 瞿广鑫, 花永盛. 冷-热不平衡热荷载下黏土地基中能量桩长期热-力学特性[J]. 防灾减灾工程学报, 2022, 42(6): 1333-1340.
YANG T, QU G X, HUA Y S.Long-term thermo-mechanical behavior of energy pile in clay under unbalanced cooling-heating cycles[J]. Journal of disaster prevention and mitigation engineering, 2022, 42(6): 1333-1340.
[2] NG C W W, SHI C, GUNAWAN A, et al. Centrifuge modelling of energy piles subjected to heating and cooling cycles in clay[J]. Géotechnique letters, 2014, 4(4): 310-316.
[3] 张沛, 石雨恒, 费康. 能量桩群桩基础沉降特性分析[J]. 土木与环境工程学报(中英文), 2022, 44(1): 75-86.
ZHANG P, SHI Y H, FEI K.Analysis of foundation settlement behaviors of energy pile groups[J]. Journal of civil and environmental engineering, 2022, 44(1): 75-86.
[4] ROTTA LORIA A F, LALOUI L. The equivalent pier method for energy pile groups[J]. Géotechnique, 2017, 67(8): 691-702.
[5] ROTTA LORIA A F, VADROT A, LALOUI L. Analysis of the vertical displacement of energy pile groups[J]. Geomechanics for energy and the environment, 2018, 16: 1-14.
[6] 费康, 朱志慧, 石雨恒, 等. 能量桩群桩工作特性简化分析方法研究[J]. 岩土力学, 2020, 41(12): 3889-3898.
FEI K, ZHU Z H, SHI Y H, et al.A simplified method for geotechnical analysis of energy pile groups[J]. Rock and soil mechanics, 2020, 41(12): 3889-3898.
[7] JEONG S, LIM H, LEE J K, et al.Thermally induced mechanical response of energy piles in axially loaded pile groups[J]. Applied thermal engineering, 2014, 71(1): 608-615.
[8] 方金城, 孔纲强, 孟永东, 等. 低承台2×2能量桩基础单桩运行热力耦合特性研究[J]. 岩土工程学报, 2020, 42(2): 317-324.
FANG J C, KONG G Q, MENG Y D, et al.Thermo-mechanical coupling characteristics of single energy pile operation in 2×2 pile-cap foundation[J]. Chinese journal of geotechnical engineering, 2020, 42(2): 317-324.
[9] MIMOUNI T, LALOUI L.Behaviour of a group of energy piles[J]. Canadian geotechnical journal, 2015, 52(12): 1913-1929.
[10] 王言然, 孔纲强, 沈扬, 等. 热干扰下能量桩热力特性现场试验研究[J]. 清华大学学报(自然科学版), 2020, 60(9): 733-739.
WANG Y R, KONG G Q, SHEN Y, et al.Field tests of the thermal-mechanical characteristics of energy piles during thermal interactions[J]. Journal of Tsinghua University (science and technology), 2020, 60(9): 733-739.
[11] PENG H F, KONG G Q, LIU H L, et al.Thermo-mechanical behaviour of floating energy pile groups in sand[J]. Journal of Zhejiang University-Science A, 2018, 19(8): 638-649.
[12] JGJ 106—2014. 建筑基桩检测技术规范[S].
JGJ 106—2014. Technical code for testing of building foundation piles[S].
[13] 任建喜, 韩强, 高虎艳, 等. 西安地铁沿线地层温度冬季分布规律观测研究[J]. 城市轨道交通研究, 2012, 15(10): 39-42.
REN J X, HAN Q, GAO H Y, et al.On the distribution law of geothermal formation in winter along Xi'an metro line[J]. Urban mass transit, 2012, 15(10): 39-42.
[14] SANI A K, SINGH R M.Response of unsaturated soils to heating of geothermal energy pile[J]. Renewable energy, 2020, 147: 2618-2632.
[15] 曹卫平, 李庆, 李清源. 黄土地基中能量桩热力学特性及承载变形性状模型试验研究[J]. 太阳能学报, 2023, 44(4): 539-546.
CAO W P, LI Q, LI Q Y.Model test on thermo-mechanical characteristics and bearing deformation behavior of energy pile in loess foundation[J]. Acta energiae solaris sinica, 2023, 44(4): 539-546.

基金

陕西省自然科学基础研究计划一般面上项目(2024JC-YBMS-299)

PDF(2406 KB)

Accesses

Citation

Detail

段落导航
相关文章

/