冰荷载是影响海上风力机安全运行的重要决定性因素,严重时会致使海上风力机结构发生冰激振动破坏和冰激疲劳失效。该研究基于粘聚单元(cohesive element method,CEM)-有限元(finite element method,FEM)耦合方法,通过非线性分布弹簧考虑桩-土相互作用,建立海冰-寒区单桩海上风力机结构在风-冰联合作用下的整体耦合冰激振动非线性有限元模型。进而,基于非线性数值仿真工具LS-DYNA,分别模拟冰与直立结构和带有抗冰锥的基础结构相互作用过程,并与现有的挤压和弯曲冰力模型进行对比,验证该研究模拟动冰荷载的准确性,讨论两种冰破坏模式下动冰荷载的变化规律。最后,为解决海上风力机发生的强烈冰激振动问题,分别采用振动控制方法和施加抗冰锥的方式,开展风、冰联合作用下海上风力机动冰力和动力响应研究,对比分析以上两种减振方式的减振机理和减振效果差异。结果表明,虽然抗冰锥可明显降低冰-海上风力机相互作用的动冰荷载幅值,然而采用振动控制策略的海上风力机减振效果明显优于抗冰锥。因此,在海上风力机的冰激结构损伤研究和抗冰设计中必须分别考虑以上两种减振方式对结构的影响。
Abstract
Ice loads are an important and decisive factor affecting the safe operation of offshore wind turbines. In severe cases, it shall lead to ice-induced vibration damage and ice-induced fatigue failure of offshore wind turbine structures. Based on the cohesive element method (CEM) and finite element method (FEM) and considering the pile-soil interaction through nonlinear distributed springs, a nonlinear finite element model of the fully ice-monopile offshore wind turbine structures in sea ice-cold regions is established. Furthermore, based on the numerical simulation tool LS-DYNA, the interaction process of ice with the vertical structure and the supporting structure with ice-breaking cones are simulated respectively, and compared with the ice force model proposed in the specifications to verify the accuracy of the simulated dynamic ice loads. Finally, the vibration control method and the ice-breaking method are used to study the dynamic response of offshore wind turbines under the combined action of wind and ice, and the differences between the both vibration reduction methods were compared. The results show that the cohesive element method adopted in this paper can well simulate the crushing and bending failure processes of sea ice. Meanwhile, the vibration reduction effect of the offshore wind turbine using the vibration control strategy is better than that of applying the ice-breaking method.
关键词
海冰 /
风场 /
海上风力机 /
桩基础 /
粘聚单元方法 /
振动控制
Key words
sea ice /
wind farm /
offshore wind turbine /
pile foundations /
cohesive element method /
vibration control
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SHI W, TAN X, GAO Z, et al.Numerical study of ice-induced loads and responses of a monopile-type offshore wind turbine in parked and operating conditions[J]. Cold regions science and technology, 2016, 123: 121-139.
[2] 叶柯华, 李春, 王渊博, 等. 湍流风与浮冰联合作用下近海风力机动力学响应[J]. 热能动力工程, 2019, 34(9): 123-131.
YE K H, LI C, WANG Y B, et al.Dynamic response of offshore wind turbine under the combined load of turbulent wind and floating ice[J]. Journal of engineering for thermal energy and power, 2019, 34(9): 123-131.
[3] HEINONEN J, RISSANEN S.Coupled-crushing analysis of a sea ice-wind turbine interaction-feasibility study of FAST simulation software[J]. Ships and offshore structures, 2017, 12(8): 1056-1063.
[4] WANG Q.Ice-inducted vibrations under continuous brittle crushing for an offshore wind turbine[D]. South-Trondelag: Norwegian University of Science and Technology, 2015.
[5] 宋祖厂, 陈建民. 海冰与独腿简易平台碰撞动力分析[J]. 中国海洋平台, 2009, 24(2): 19-22.
SONG Z C, CHEN J M.Dynamic analysis of the collision between sea-ice and single-pile simple platform[J]. China offshore platform, 2009, 24(2): 19-22.
[6] 董科, 李友龙. 半潜式海洋平台受浮冰撞击作用损伤分析[J]. 舰船科学技术, 2018, 40(1): 57-61.
DONG K, LI Y L.Damage analysis of a semi-submersible offshore platform bump by floating ice[J]. Ship science and technology, 2018, 40(1): 57-61.
[7] LIU Y Z, SHI W, WANG W H, et al.Dynamic analysis of monopile-type offshore wind turbine under sea ice coupling with fluid-structure interaction[J]. Frontiers in marine science, 2022, 9: 839897.
[8] 狄少丞, 季顺迎. 海冰与自升式海洋平台相互作用GPU离散元模拟[J]. 力学学报, 2014, 46(4): 561-571.
DI S C, JI S Y.GPU-based discrete element modelling of interaction between sea ice and jack-up platform structure[J]. Chinese journal of theoretical and applied mechanics, 2014, 46(4): 561-571.
[9] GÜRTNER A, BJERKAS M, KÜHNLEIN W, et al. Numerical simulation of ice action to a lighthouse[C]//Polar and Arctic Sciences and Technology. Honolulu, Hawaii, USA, 2009.
[10] 詹开宇, 曹留帅, 万德成. 基于黏聚单元法计算分析海洋平台锥形立柱冰载荷[J]. 海洋工程, 2021, 39(4): 62-69.
ZHAN K Y, CAO L S, WAN D C.Cohesive element method for ice load on conical structures[J]. The ocean engineering, 2021, 39(4): 62-69.
[11] 武文华, 于佰杰, 许宁, 等. 海冰与锥体抗冰结构动力作用的数值模拟[J]. 工程力学, 2008, 25(11): 192-196.
WU W H, YU B J, XU N, et al.Numerical simulation of dynamic ice action on conical structure[J]. Engineering mechanics, 2008, 25(11): 192-196.
[12] 崔浩, 王文华, 王滨, 等. 地震作用下海上风机TMD控制[J]. 水力发电, 2019, 45(4): 110-115.
CUI H, WANG W H, WANG B, et al.Vibration control of offshore wind turbines under earthquakes by using tuned mass damper[J]. Water power, 2019, 45(4): 110-115.
[13] 王文华, 李昕, 李颖, 等. 地震荷载作用下海上风力机结构动力模型试验[J]. 太阳能学报, 2018, 39(7): 2018-2026.
WANG W H, LI X, LI Y, et al.Dynamic model test and numerical analysis of an offshore wind turbine under seismic loads[J]. Acta energiae solaris sinica, 2018, 39(7): 2018-2026.
[14] VELARDE J, BACHYNSKI E E.Design and fatigue analysis of monopile foundations to support the DTU 10 MW offshore wind turbine[J]. Energy procedia, 2017, 137: 3-13.
[15] 王健伟, 邹早建. 基于非线性有限元法的船舶-冰层碰撞结构响应研究[J]. 振动与冲击, 2015, 34(23): 125-130.
WANG J W, ZOU Z J.Ship's structural response during its collision with level ice based on nonlinear finite element method[J]. Journal of vibration and shock, 2015, 34(23): 125-130.
[16] YANG Y, BASHIR M, LI C, et al.Mitigation of coupled wind-wave-earthquake responses of a 10 MW fixed-bottom offshore wind turbine[J]. Renewable energy, 2020, 157: 1171-1184.
[17] 屈衍, 张大勇, 许宁, 等. 《中国海冰条件及应用》与ISO 19906冰荷载规定比较[J]. 哈尔滨工程大学学报, 2018, 39(4): 629-634.
QU Y, ZHANG D Y, XU N, et al.Comparison of the ice load regulations in ISO 19906 and the sea ice conditions and its application in China[J]. Journal of Harbin Engineering University, 2018, 39(4): 629-634.
[18] IEC 61400-1, Wind Turbines-part 1: design requirements[S]. 2012.
[19] RALSTON T D.Plastic limit analysis of sheet ice loads on conical structures[C]//TRYDE P. Physics and Mechanics of Ice. Heidelberg, Berlin, 1980: 289-308.
[20] CROASDALE K R.A method for the calculation of sheet ice loads on sloping structures[J]. IAHR ice symposium, 1984, 157: 874-885.
[21] JONKMAN B J, KILCHER L.TurbSim user's guide[R]. National Renewable Energy Laboratory, 2012.
[22] ZUO H, BI K, HAO H.Mitigation of tower and out-of-plane blade vibrations of offshore monopile wind turbines by using multiple tuned mass dampers[J]. Structure and infrastructure engineering maintenance management life cycle design and performance, 2019: 1-16.
基金
国家自然科学基金(52071301; 51909238); 浙江省自然科学基金(LHY21E090001)