基于EOF-DBSCAN-GRU 的分布式光伏集群出力预测方法研究

麻吕斌, 潘国兵, 蒋群, 郭鹏, 吴春华, 赵宇航

太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 39-46.

PDF(2414 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2414 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 39-46. DOI: 10.19912/j.0254-0096.tynxb.2022-1461

基于EOF-DBSCAN-GRU 的分布式光伏集群出力预测方法研究

  • 麻吕斌1, 潘国兵2, 蒋群3, 郭鹏3, 吴春华1, 赵宇航2
作者信息 +

RESEARCH ON DISTRIBUTED PV CLUSTER POWER OUTPUT FORECASTING METHOD BASED ON EOF-DBSCAN-GRU

  • Ma Lübin1, Pan Guobing2, Jiang Qun3, Guo Peng3, Wu Chunhua1, Zhao Yuhang2
Author information +
文章历史 +

摘要

提出一种基于EOF-DBSCAN划分集群的改进统计升尺度的光伏集群出力预测建模方法。针对传统统计升尺度方法子集群中光伏电站出力特性不一致问题,通过皮尔逊相关系数和经验正交函数(EOF)优化特征空间,再根据密度聚类模型(DBSCAN)对区域内光伏电站划分集群,从而增强光伏电站聚类后集群出力特性的一致性。针对待预测日权重系数时间序列动态特性的提取、预测问题,提出一种基于动态时间规整(DTW)的相似日选取算法。最后利用循环神经网络(GRU)模型进行光伏电站出力预测。实验表明该集群预测方法的平均误差百分数(MAPE)约为6.33%,均方根误差(RMSE)约为13.93 kW,均方误差(MSE)为194.25 kW,通过实际光伏电站数据证明了所提方法的准确性和有效性。

Abstract

An improved statistical scale-up modeling method for PV cluster output forecasting based on empirical orthogonal function (EOF) and density-base spatial clustering of applications with noise (DBSCAN) is proposed. To solve the problems of inconsistent output characteristics of PV power stations in the subgroup of traditional statistical upscaling method, Pearson correlation coefficient and EOF were used to optimize the feature space, and then the PV power stations in the region were divided into clusters according to DBSCAN model, so as to enhance the consistency of the output characteristics of PV power stations after clustering. Aiming at the problems of extracting and predicting the dynamic characteristics of time series of weight coefficients of days to be forecasted, a similar day selection algorithm based on dynamic time warping (DTW) was proposed. Finally, the gate recurrent unit (GRU) neural network model is built to predict the power output of PV power stations. Experimental results show that the mean absolute percentage error (MAPE) , root mean square error (RMSE) and mean square error (MSE) of the cluster forecasting method are about 6.33%, 13.93 and 194.25 kW. The effectiveness and accuracy of the proposed method are verified by the measured data of actual PV power stations.

关键词

分布式光伏电站 / 集群划分 / 经验正交函数 / DBSCAN聚类算法 / 动态时间规整

Key words

distributed photovoltaic power generation / cluster division / empirical orthogonal function / density-base spatial clustering of applications with noise / dynamic time warping

引用本文

导出引用
麻吕斌, 潘国兵, 蒋群, 郭鹏, 吴春华, 赵宇航. 基于EOF-DBSCAN-GRU 的分布式光伏集群出力预测方法研究[J]. 太阳能学报. 2024, 45(1): 39-46 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1461
Ma Lübin, Pan Guobing, Jiang Qun, Guo Peng, Wu Chunhua, Zhao Yuhang. RESEARCH ON DISTRIBUTED PV CLUSTER POWER OUTPUT FORECASTING METHOD BASED ON EOF-DBSCAN-GRU[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 39-46 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1461
中图分类号: TM615   

参考文献

[1] 赵泽妮, 云斯宁, 贾凌云, 等. 基于统计模型的短期风能预测方法研究进展[J]. 太阳能学报, 2022, 43(11): 224-234.
ZHAO Z N, YUN S N, JIA L Y, et al.Recent progress in short-term forecasting of wind energy based on statistical models[J]. Acta energiae solaris sinica, 2022, 43(11): 224-234.
[2] 吴硕. 光伏发电系统功率预测方法研究综述[J]. 热能动力工程, 2021, 36(8): 1-7.
WU S.Review of power forecasting methods of photovoltaic power generation system[J]. Journal of engineering for thermal energy and power, 2021, 36(8): 1-7.
[3] 贾凌云, 云斯宁, 赵泽妮, 等. 神经网络短期光伏发电预测的应用研究进展[J]. 太阳能学报, 2022, 43(12): 88-97.
JIA L Y, YUN S N, ZHAO Z N, et al.Recent progress of short-term forecasting of photovoltaic generation based on artificial neural networks[J]. Acta energiae solaris sinica, 2022, 43(12): 88-97.
[4] 赵滨滨, 王莹, 王彬, 等. 基于ARIMA时间序列的分布式光伏系统输出功率预测方法研究[J]. 可再生能源, 2019, 37(6): 820-823.
ZHAO B B, WANG Y, WANG B, et al.Photovoltaic power prediction in distribution network based on ARIMA model time series[J]. Renewable energy resources, 2019, 37(6): 820-823.
[5] 孙荣富, 丁华杰, 牧晶, 等. 基于统计升尺度的光伏发电集群功率预测方法及装置: CN109978242A[P].2019-07-05.
SUN R F, DING H J, MU J, et al. Photovoltaic power generation cluster power prediction method and device based on statistical upscaling: CN109978242A[P].2019-07-05.
[6] 张扬科, 李刚, 李秀峰. 基于典型代表电站和改进SVM的区域光伏功率短期预测方法[J]. 电力自动化设备, 2021, 41(11): 205-210.
ZHANG Y K, LI G, LI X F.Short-term forecasting method for regional photovoltaic power based on typical representative power stations and improved SVM[J]. Electric power automation equipment, 2021, 41(11): 205-210.
[7] OUYANG W, YU K M, SODSONG N, et al.Short-term solar PV forecasting based on recurrent neural network and clustering[C]//2019 International Conference on Image and Video Processing, and Artificial Intelligence. Shanghai, China, 2019.
[8] TINA G M, VENTURA C, FERLITO S, et al.A state-of-art-review on machine-learning based methods for PV[J]. Applied sciences, 2021, 11(16): 7550.
[9] GANDOMAN F H, RAEISI F, AHMADI A.A literature review on estimating of PV-array hourly power under cloudy weather conditions[J]. Renewable and sustainable energy reviews, 2016, 63: 579-592.
[10] 刘嘉诚, 刘俊, 赵宏炎, 等. 基于DKDE与改进mRMR特征选择的短期光伏出力预测[J]. 电力系统自动化, 2021, 45(14): 13-21.
LIU J C, LIU J, ZHAO H Y, et al.Short-term photovoltaic output forecasting based on diffusion kernel density estimation and improved max-relevance and Min-redundancy feature selection[J]. Automation of electric power systems, 2021, 45(14): 13-21.
[11] 张雲钦, 程起泽, 蒋文杰, 等. 基于EMD-PCA-LSTM的光伏功率预测模型[J]. 太阳能学报, 2021, 42(9): 62-69.
ZHANG Y Q, CHENG Q Z, JIANG W J, et al.Photovoltaic power prediction model based on EMD-PCA-LSTM[J]. Acta energiae solaris sinica, 2021, 42(9): 62-69.
[12] 朱琼锋, 李家腾, 乔骥, 等. 人工智能技术在新能源功率预测的应用及展望[J]. 中国电机工程学报, 2023, 43(8): 3027-3048.
ZHU Q F, LI J T, QIAO J, et al.Application and prospect of artificial intelligence technology in renewable energy forecasting[J]. Proceedings of the CSEE, 2023, 43(8): 3027-3048.
[13] 陈海燕, 刘晨晖, 孙博. 时间序列数据挖掘的相似性度量综述[J]. 控制与决策, 2017, 32(1): 1-11.
CHEN H Y, LIU C H, SUN B.Survey on similarity measurement of time series data mining[J]. Control and decision, 2017, 32(1): 1-11.
[14] JEONG Y S, JEONG M K, OMITAOMU O A.Weighted dynamic time warping for time series classification[J]. Pattern recognition, 2011, 44(9): 2231-2240.
[15] 王志建, 张炜健, 刘士杰. 基于EMD-GRU循环神经网络的转向交通流量组合预测[J]. 工业控制计算机, 2020, 33(12): 73-76.
WANG Z J, ZHANG W J, LIU S J.Combined forecasting of turning traffic flow based on EMD-GRU recurrent neural network[J]. Industrial control computer, 2020, 33(12): 73-76.
[16] 朱伟, 孙运全, 钱尧, 等. 基于CEEMD-GRU模型的短期电力负荷预测方法[J]. 电测与仪表, 2023, 60(1): 16-22.
ZHU W, SUN Y Q, QIAN Y, et al.Short-term load forecasting method based on complementary ensemble empirical mode decomposition and gated recurrent unit neural network[J]. Electrical measurement & instrumentation, 2023, 60(1): 16-22.
[17] 赵兵, 王增平, 纪维佳, 等. 基于注意力机制的CNN-GRU短期电力负荷预测方法[J]. 电网技术, 2019, 43(12): 4370-4376.
ZHAO B, WANG Z P, JI W J, et al.A short-term power load forecasting method based on attention mechanism of CNN-GRU[J]. Power system technology, 2019, 43(12): 4370-4376.
[18] 王康, 张智晟, 撖奥洋, 等. 基于Bagging的双向GRU集成神经网络短期负荷预测[J]. 电力系统及其自动化学报, 2021, 33(10): 24-30.
WANG K, ZHANG Z S, HAN A Y, et al.Short-term load forecasting based on bidirectional GRU neural network integrated by bagging algorithm[J]. Proceedings of the CSU-EPSA, 2021, 33(10): 24-30.
[19] 姚程文, 杨苹, 刘泽健. 基于CNN-GRU混合神经网络的负荷预测方法[J]. 电网技术, 2020, 44(9): 3416-3424.
YAO C W, YANG P, LIU Z J.Load forecasting method based on CNN-GRU hybrid neural network[J]. Power system technology, 2020, 44(9): 3416-3424.

基金

浙江省重点研发计划(2021C01112)

PDF(2414 KB)

Accesses

Citation

Detail

段落导航
相关文章

/