针对复杂环境变化易引起海上浮式风力机不稳定的问题,提出一种基于模糊LQR、模糊PI相结合且易于工程应用的桨距控制新方案,实现维持浮式风力发电机组输出功率稳定、抑制浮台运动、减少叶根及塔基疲劳载荷的目的。模糊PI根据发电机转子转速误差变化动态选择期望的PI增益,模糊LQR基于模糊规则自适应调整闭环反馈增益,在保证风力机输出功率和浮台稳定的基础上,进一步减小叶根和塔基疲劳载荷。基于FAST与Matlab/Simulink在不同环境条件下进行联合仿真,验证所提方案的有效性和优越性;通过时域、频域分析表明,与PI控制相比,所提方案在减少叶根处平面外载荷和塔基横向载荷方面有明显改善效果。
Abstract
Complex environmental changes are prone to cause instability of floating offshore wind turbines. A new pitch control scheme which is easy for engineering application is proposed based on fuzzy LQR and fuzzy PI to maintain the output power stabilization of the floating wind turbine, restrain the movement of the floating platform, and reduce the fatigue load of the blade root and tower foundation. The fuzzy PI dynamically selects the desired PI gain according to the variation of the generator rotor speed error. The fuzzy LQR adaptively adjusts the closed-loop feedback gain based on fuzzy rules to further reduce the fatigue load of blade root and tower while ensuring the output power of wind turbine and the stability of floating platform. Co-simulation is executed based on FAST and Matlab/Simulink to verify the effectiveness and superiority of the proposed scheme under different environmental conditions. The time and frequency domain analysis show that the proposed scheme has a significant improvement in reducing the out-of-plane load at the blade root and the lateral load at the tower base compared with PI control.
关键词
海上风力机 /
载荷 /
最优控制系统 /
模糊LQR
Key words
offshore wind turbines /
loads /
optimal control systems /
fuzzy LQR
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 蔡新, 张洪建, 王浩, 等. 面向深远海的新型海上风力机浮式平台水动力性能研究[J]. 中国电机工程学报, 2022, 42(12): 4339-4352.
CAI X, ZHANG H J, WANG H, et al.Research on the hydrodynamic performance of a novel floating platform of the offshore wind turbine in deep water[J]. Proceedings of the CSEE, 2022, 42(12): 4339-4352.
[2] HA K, TRUONG H V A, DANG T D, et al. Recent control technologies for floating offshore wind energy system: a review[J]. International journal of precision engineering and manufacturing-green technology, 2021, 8(1): 281-301.
[3] GAMBIER A, NAZARUDDIN Y Y.Collective pitch control with active tower damping of a wind turbine by using a nonlinear PID approach[J]. IFAC-PapersOnLine, 2018, 51(4): 238-243.
[4] LASHEEN A, ELNAGGAR M, YASSIN H.Adaptive control design and implementation for collective pitch in wind energy conversion systems[J]. ISA transactions, 2020, 102: 251-263.
[5] LI S Z, HAN Y Z, PAN W G, et al.Variable-gain higher-order sliding mode pitch control of floating offshore wind turbine[J]. Journal of marine science and engineering, 2021, 9(11): 1172.
[6] SARKAR S, CHEN L, FITZGERALD B, et al.Multi-resolution wavelet pitch controller for spar-type floating offshore wind turbines including wave-current interactions[J]. Journal of sound and vibration, 2020, 470: 115170.
[7] DA CUNHA BARROSO RAMOS R L. Effect of turbulence intensity on the linear quadratic control of spar buoy floating wind turbines[J]. Marine systems & ocean technology, 2021, 16(2): 84-98.
[8] 闫学勤, 王维庆, 王海云. 基于IQPI-R的风力机独立变桨距控制策略研究[J]. 太阳能学报, 2020, 41(10): 229-235.
YAN X Q, WANG W Q, WANG H Y.Research on individual pitch control strategy of wind turbines based on IQPI-R[J]. Acta energiae solaris sinica, 2020, 41(10): 229-235.
[9] SARKAR S.Individual blade pitch control strategies for spar-type floating offshore wind turbines[D]. Dublin: Trinity College Dublin, 2020.
[10] BOSSANYI E A.Individual blade pitch control for load reduction[J]. Wind energy, 2003, 6(2): 119-128.
[11] BOSSANYI E A, FLEMING P A, WRIGHT A D.Validation of individual pitch control by field tests on two- and three-bladed wind turbines[J]. IEEE transactions on control systems technology, 2013, 21(4): 1067-1078.
[12] ROH C, HA Y J, AHN H J, et al.A comparative analysis of the characteristics of platform motion of a floating offshore wind turbine based on pitch controllers[J]. Energies, 2022, 15(3): 716.
[13] PUSTINA L, LUGNI C, BERNARDINI G, et al.Control of power generated by a floating offshore wind turbine perturbed by sea waves[J]. Renewable and sustainable energy reviews, 2020, 132: 109984.
[14] RAACH S, SCHLIPF D, SANDNER F, et al.Nonlinear model predictive control of floating wind turbines with individual pitch control[C]//2014 American Control Conference. Portland, OR, USA, 2014: 4434-4439.
[15] 王博, 李春, 岳敏楠, 等. 海上浮式风力机叶片减载及平台运动控制研究[J]. 热能动力工程, 2020, 35(9): 120-126.
WANG B, LI C, YUE M N, et al.Platform motion control and blades load reduction for floating offshore wind turbines[J]. Journal of engineering for thermal energy and power, 2020, 35(9): 120-126.
[16] 杨显刚, 金鑫, 何玉林, 等. 基于LQR方法的大型风力机转矩控制建模与仿真[J]. 太阳能学报, 2015, 36(6): 1429-1434.
YANG X G, JIN X, HE Y L, et al.Modeling and simulation for torque control of large-scale wind turbine based on LQR method[J]. Acta energiae solaris sinica, 2015, 36(6): 1429-1434.
[17] SARKAR S, FITZGERALD B, BASU B.Individual blade pitch control of floating offshore wind turbines for load mitigation and power regulation[J]. IEEE transactions on control systems technology, 2021, 29(1): 305-315.
[18] MA Y, SCLAVOUNOS P D, CROSS-WHITER J, et al.Wave forecast and its application to the optimal control of offshore floating wind turbine for load mitigation[J]. Renewable energy, 2018, 128: 163-176.
[19] ASGHARNIA A, SHAHNAZI R, JAMALI A.Performance and robustness of optimal fractional fuzzy PID controllers for pitch control of a wind turbine using chaotic optimization algorithms[J]. ISA transactions, 2018, 79: 27-44.
[20] LIU S, HAN Y Z, DU C Q, et al.Fuzzy PI control for grid-side converter of DFIG-based wind turbine system[C]//2021 40th Chinese Control Conference (CCC). Shanghai, China, 2021: 5788-5793.
基金
国家自然科学基金(61803230); 山东省高等学校青创科技支持计划(2019KJN023)