针对风力发电机组钢制高塔的涡激振动问题,采用固体-流体相结合的仿真方法对停机状态的塔架一阶涡激振动特性进行研究。首先以某2.5 MW、140 m高塔机组为研究对象,建立塔架-叶片耦合结构仿真模型,利用模态和CFD仿真分析塔架一阶涡激振动的共振频率和共振风速范围,表明该风电机组塔架存在发生一阶涡激振动的风险;然后提出一种基于固体-流体迭代快速仿真一阶涡激振动最大位移计算方法,考虑叶片对塔架涡激振动的耦合作用,得到最大振动位移。现场测试表明实测最大一阶涡激振动位移与仿真结果基本相符,验证了该仿真方法的准确性。
Abstract
Aiming at the problem of the first-order vortex induced vibration of the steel tower of the wind turbine generator system(WTGS), the first-order vortex induced vibration characteristics of the whole WTGS are studied by using the simulation method of solid fluid combination. Firstly, taking a 2.5 MW and 140 m tower unit as the research object,a tower-blade coupling simulation structure model is established. The resonance frequency and resonance wind speed range of the first-order vortex induced vibration of the whole WTGS are analyzed by modal and CFD simulation, which shows that the wind turbine tower has the risk of first-order vortex induced vibration. Then, a fast simulation method based on solid fluid iteration is proposed to calculate the first-order vortex induced vibration displacement. Considering the coupling effect of the blades on the vortex-induced vibration of the tower, the maximum vibration displacement is obtained. Field tests show that the measured maximum first- order vortex-induced vibration displacement is basically consistent with the simulation results, which verifies the accuracy of the simulation method.
关键词
风电机组 /
涡激振动 /
最大位移 /
固体-流体迭代 /
现场测试
Key words
wind turbine generator /
vortex induced vibration /
maximum displacement /
solid fluid iteration /
field test
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 龙凯, 贾娇. 大型水平轴风力机塔筒涡激振动焊缝疲劳分析[J]. 太阳能学报, 2015, 36(10): 2455-2459.
LONG K, JIA J.Analysis of fatigue damage of tower of large scale horizontal axis wind turbine by wind-induced transverse vibration[J]. Acta energiae solaris sinica, 2015, 36(10): 2455-2459.
[2] WILLIAMSON C H K, GOVARDHAN R. A brief review of recent results in vortex-induced vibrations[J]. Journal of wind engineering and industrial aerodynamics, 2008, 96(6/7): 713-735.
[3] ÉTIENNE S, PELLETIER D.The low Reynolds number limit of vortex-induced vibrations[J]. Journal of fluids and structures, 2012, 31: 18-29.
[4] GOVARDHAN R N, WILLIAMSON C H K. Defining the ‘modified Griffin plot' in vortex-induced vibration: revealing the effect of Reynolds number using controlled damping[J]. Journal of fluid mechanics, 2006, 561: 147.
[5] JAMEI S, MAIMUN A, GHAZANFARI S A, et al.Two degrees of freedom CFD simulation of vortex induced vibration of two circular cylinder in tandem arrangements[C]//Offshore Technology Conference. Kuala Lumpur, Malaysia, 2014.
[6] 秦斌. 两个串列圆柱的横向流致振动实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
QIN B.Experimental study of two tandem cylinders in crossflow: flow-induced vibration[D]. Harbin: Harbin Institute of Technology, 2018.
[7] VIRÉ A, DERKSEN A, FOLKERSMA M, et al.Two-dimensional numerical simulations of vortex-induced vibrations for a cylinder in conditions representative of wind turbine towers[J]. Wind energy science, 2020, 5(2): 793-806.
[8] FONTECHA R, HENNEKE B, KEMPER F, et al.Aerodynamic properties of wind turbine towers based on wind tunnel experiments[J]. Procedia engineering, 2017, 199: 3121-3126.
[9] 雷斌, 李毅鹏. 涡激振动对风电机组塔筒的影响[J]. 风能, 2018(4): 80-84.
LEI B, LI Y P.Influence of vortex-induced vibration on tower of wind turbine[J]. Wind energy, 2018(4): 80-84.
[10] 赵大文, 宋磊建. 基于实测数据的风电机组塔筒涡激振动特性分析[J]. 风能, 2018(6): 96-99.
ZHAO D W, SONG L J.Analysis of vortex-induced vibration characteristics of wind turbine tower based on measured data[J]. Wind energy, 2018(6): 96-99.
[11] OH S, ISHIHARA T.A study on structure parameters of an offshore wind turbine by excitation test using active mass damper[R]. EWEA Offshore, 2013.
[12] MENTER F R.Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA journal, 1994, 32: 1598-1607.
[13] 赵宗文. 立管模型涡激振动的数值模拟研究[D]. 舟山: 浙江海洋大学, 2016.
ZHAO Z W.Numerical simulation of vortex-induced vibration of riser model[D]. Zhoushan: Zhejiang Ocean University, 2016.
[14] 王慧, 刘正士. 一种识别结构模态阻尼比的方法[J]. 农业机械学报, 2008, 39(6): 201-202, 169.
WANG H, LIU Z S.Method for identifying structural modal damping ratio[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(6): 201-202, 169.
[15] IEC 61400-6, International standard, wind turbine generator system-part 6: tower and foundation design requirements[S].
基金
国家自然科学基金(U22A20178); 国家重点研发计划(2019YFE0192600); 浙江省基础公益研究计划(LHZ21E090004)