太阳能热化学转化技术研究进展

岳霞, 阿迪力·巴吐尔

太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 56-66.

PDF(5844 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(5844 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 56-66. DOI: 10.19912/j.0254-0096.tynxb.2022-1470

太阳能热化学转化技术研究进展

  • 岳霞1, 阿迪力·巴吐尔2
作者信息 +

PROGRESS IN SOLAR THERMOCHEMICAL CONVERSION TECHNOLOGIES

  • Yue Xia1, Adili Batuer2
Author information +
文章历史 +

摘要

利用热化学反应将太阳能转化为易存储的化学产品,是实现太阳能大规模连续利用的有效方式。聚光器和反应器是太阳能热化学转化系统的核心设备。该文首先基于热化学反应进行温度的不同,对典型的低、中、高温太阳能热化学转化系统进行介绍,并对不同温度段系统中常用的聚光器类型进行总结,同时简要评述不同太阳能热化学转化系统的优缺点和发展趋势;然后基于太阳能热化学转化过程中传热方式的差异,对直接辐射加热型和间接辐射加热型太阳能反应器的种类、结构、工作原理和研究进展进行阐述。

Abstract

Converting solar energy into chemical products is an effective way to achieve large-scale and continuous utilization of solar energy. The collectors and reactors are core equipment of solar thermochemical conversion systems. Based on the thermochemical reaction temperatures, this paper firstly introduced the typical solar thermochemical conversion systems in the low, middle and high temperatures, and the concentrators used in those systems are summarized. At the same time, the advantages/disadvantages and the development trends of different solar thermochemical conversion systems are briefly reviewed. Then, based on the heat transfer mode between solar energy and reactants, the following aspects of direct and indirect radiation heating thermochemical reactors are described Containing of types, structures, working principles and research progress.

关键词

太阳能 / 热化学反应 / 聚光器 / 直接辐射型反应器 / 间接辐射型反应器

Key words

solar energy / thermochemical reactions / solar concentrator / direct solar radiation reactor / indirect solar radiation reactors

引用本文

导出引用
岳霞, 阿迪力·巴吐尔. 太阳能热化学转化技术研究进展[J]. 太阳能学报. 2024, 45(1): 56-66 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1470
Yue Xia, Adili Batuer. PROGRESS IN SOLAR THERMOCHEMICAL CONVERSION TECHNOLOGIES[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 56-66 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1470
中图分类号: TK513   

参考文献

[1] LEWIS N S.Toward cost-effective solar energy use[J]. Science, 2007, 315(5813): 798-801.
[2] 李仁贵, 李灿. 太阳能光催化分解水研究进展[J]. 科技导报, 2020, 38(23): 49-61.
LI R G, LI C.Research status and development of photocatalytic water splitting for solar energy conversion[J]. Science & technology review, 2020, 38(23): 49-61.
[3] LEWIS N S, NOCERA D G.Powering the planet: chemical challenges in solar energy utilization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(43): 15729-15735.
[4] 金健. 聚光太阳能燃料转化机理研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2019.
JIN J.Study on concentrated solar-driven thermochemical fuel production[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2019.
[5] LIU Q B, HONG H, YUAN J L, et al.Experimental investigation of hydrogen production integrated methanol steam reforming with middle-temperature solar thermal energy[J]. Applied energy, 2009, 86(2): 155-162.
[6] SUI J, LIU Q B, DANG J G, et al.Experimental investigation of methanol decomposition with mid-and low-temperature solar thermal energy[J]. International journal of energy research, 2011, 35(1): 61-67.
[7] LIU T X, BAI Z, ZHENG Z M, et al.100 kWe power generation pilot plant with a solar thermochemical process: design, modeling, construction, and testing[J]. Applied energy, 2019, 251: 113217.
[8] JEBASINGH V K, JOSELIN HERBERT G M. A review of solar parabolic trough collector[J]. Renewable and sustainable energy reviews, 2016, 54: 1085-1091.
[9] ISLAM A, MILLER S, YARLAGADDA P, et al.Investigation of the effect of physical and optical factors on the optical performance of a parabolic trough collector[J]. Energies, 2017, 10(11): 1-19.
[10] ZHAO Y W, ZHANG Y D, LI W J, et al.Experimental investigation and thermodynamic analysis of effective hydrogen production driven by mid- and low-temperature solar heat[J]. Journal of cleaner production, 2018, 176: 758-769.
[11] ZEAITER J, AHMAD M N, ROONEY D, et al.Design of an automated solar concentrator for the pyrolysis of scrap rubber[J]. Energy conversion and management, 2015, 101: 118-125.
[12] SÁNCHEZ M, CLIFFORD B, NIXON J D. Modelling and evaluating a solar pyrolysis system[J]. Renewable energy, 2018, 116: 630-638.
[13] 李启明, 郑建涛, 徐海卫, 等. 线性菲涅尔式太阳能热发电技术发展概况[J]. 太阳能, 2012(7): 41-45.
LI Q M, ZHENG J T, XU H W, et al.Development of linear Fresnel solar thermal power generation technology[J]. Solar energy, 2012(7): 41-45.
[14] 马军, 王成龙, 夏养君. 线性菲涅尔式太阳能聚光系统二次聚光器研究进展[J]. 中国科学: 技术科学, 2020, 50(8): 997-1008.
MA J, WANG C L, XIA Y J.Research progress on secondary concentrator for linear Fresnel reflector[J]. Scientia sinica (technologica), 2020, 50(8): 997-1008.
[15] 李霜. 新型菲涅尔聚光器结构优化设计[D]. 成都: 电子科技大学, 2018.
LI S.New Fresnel concentrator structural optimization design[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
[16] 潘莹, 洪慧, 金红光. 太阳能热化学研究进展[J]. 科技导报, 2010, 28(7): 110-115.
PAN Y, HONG H, JIN H G.Progress in R & D on solar thermochemical conversion[J]. Science & technology review, 2010, 28(7): 110-115.
[17] MORALES S, MIRANDA R, BUSTOS D, et al.Solar biomass pyrolysis for the production of bio-fuels and chemical commodities[J]. Journal of analytical and applied pyrolysis, 2014, 109: 65-78.
[18] 常全超, 杜玉凤, 戴敏, 等. 太阳能热解制备生物炭及其对水中铜离子的吸附[J]. 环境工程学报, 2020, 14(11): 2946-2958.
CHANG Q C, DU Y F, DAI M, et al.Biochar prepared by solar pyrolysis and its adsorption of copper ions in water[J]. Chinese journal of environmental engineering, 2020, 14(11): 2946-2958.
[19] BÖHMER M, LANGNICKEL U, SANCHEZ M. Solar steam reforming of methane[J]. Solar energy materials, 1991, 24(1/2/3/4): 441-448.
[20] DENNIS C.Solar energy: radiation nation[J]. Nature,2006, 443: 23-24.
[21] 吴海峰, 刘佳维, 刘启斌. 太阳能驱动生物质气化多联产系统研究[J]. 太阳能学报, 2022, 43(1): 465-470.
WU H F, LIU J W, LIU Q B.Investigation of polygeneration system with solar driven biomass gasification[J]. Acta energiae solaris sinica, 2022, 43(1): 465-470.
[22] ZEDTWITZ P V, STEINFELD A.The solar thermal gasification of coal—energy conversion efficiency and CO2 mitigation potential[J]. Energy, 2003, 28(5): 441-456.
[23] 翟辉. 采用腔体吸收器的线聚焦太阳能集热器的理论及实验研究[D]. 上海: 上海交通大学, 2009.
ZHAI H.Thereotical and experimental investigation of linear concentrating solar collector with cavity absorber[D]. Shanghai: Shanghai Jiao Tong University, 2009.
[24] EZAWA K, KAWAGUCHI T. Method for controlling heliostat used for condensing of sunlight and device thereof: US20110146663[P].2011-06-23.
[25] KOGAN A.Direct solar thermal splitting of water and on site separation of the products I. Theoretical evaluation of hydrogen yield[J]. International journal of hydrogen energy, 1997, 22(5): 481-486.
[26] WELDEKIDAN H, STREZOV V, TOWN G.Review of solar energy for biofuel extraction[J]. Renewable and sustainable energy reviews, 2018, 88: 184-192.
[27] FUNK J, REINSTROM R.Energy requirements in production of hydrogen from water[J]. Industrial & engineering chemistry process design and development, 1966, 5: 336-342.
[28] DÄHLER F, WILD M, SCHÄPPI R, et al. Optical design and experimental characterization of a solar concentrating dish system for fuel production via thermochemical redox cycles[J]. Solar energy, 2018, 170: 568-575.
[29] ZENG K, GAUTHIER D, LI R, et al.Combined effects of initial water content and heating parameters on solar pyrolysis of beech wood[J]. Energy, 2017, 125: 552-561.
[30] YU T, YUAN Q Y, LU J F, et al.Thermochemical storage performances of methane reforming with carbon dioxide in tubular and semi-cavity reactors heated by a solar dish system[J]. Applied energy, 2017, 185: 1994-2004.
[31] EPSTEIN M, OLALDE G, SANTÉN S, et al. Towards the industrial solar carbothermal production of zinc[J]. Journal of solar energy engineering, 2008, 130: 014505.
[32] CHUEH W C, FALTER C, ABBOTT M, et al.High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria[J]. Science, 2010, 330(6012): 1797-1801.
[33] HAMILTON J, SEYEDMAHMOUDIAN M, JAMEI E, et al.A systematic review of solar driven waste to fuel pyrolysis technology for the Australian state of Victoria[J]. Energy reports, 2020, 6: 3212-3229.
[34] 杨茂华, 田兆硕, 尹田田, 等. 高效大尺寸短焦距菲涅尔透镜设计[J]. 哈尔滨工业大学学报, 2015, 47(11): 98-101.
YANG M H, TIAN Z S, YIN T T, et al.Design of Fresnel lens with high efficiency short focal length and large size[J]. Journal of Harbin institute of technology, 2015, 47(11): 98-101.
[35] ZHANG H L, BAEYENS J, DEGRÈVE J, et al. Concentrated solar power plants: review and design methodology[J]. Renewable and sustainable energy reviews, 2013, 22: 466-481.
[36] ALONSO E, ROMERO M.Review of experimental investigation on directly irradiated particles solar reactors[J]. Renewable and sustainable energy reviews, 2015, 41: 53-67.
[37] NZIHOU A, FLAMANT G, STANMORE B.Synthetic fuels from biomass using concentrated solar energy-a review[J]. Energy, 2012, 42(1): 121-131.
[38] ALONSO E,GÓMEZ F,GONZÁLEZ A J,et al. Experimental analysis of Mn3O4/MnO reduction in a packed-bed type solar reactor: oxygen partial pressure influence[C]//Proceedings of the 17th Solar PACES conference, Granada, Spain, 2011.
[39] ALONSO E,PEREZ R A C,GONZÁLEZ A J,et al. Thermal performance and residence time distribution determination in a solar reactor for chemical kinetics[C]//Proceedings of the 18th Solar PACES Conference,Marrakech, Morocco, 2012.
[40] 李珂. 菲涅耳碟式聚光器性能分析与设计[D]. 南京: 东南大学, 2018.
LI K.Performance analysis and design of Fresnel dish concentrator[D]. Nanjing: Southeast University, 2018.
[41] MARXER D, FURLER P, TAKACS M, et al.Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency[J]. Energy & environmental science, 2017, 10(5): 1142-1149.
[42] ABANADES S, FLAMANT G.Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides[J]. Solar energy, 2006, 80(12): 1611-1623.
[43] CHAMBON M, ABANADES S, FLAMANT G.Thermal dissociation of compressed ZnO and SnO2 powders in a moving-front solar thermochemical reactor[J]. AIChE journal, 2011, 57(8): 2264-2273.
[44] MÖLLER S, PALUMBO R. Solar thermal decomposition kinetics of ZnO in the temperature range 1950-2400 K[J]. Chemical engineering science, 2001, 56(15): 4505-4515.
[45] STEINFELD A, IMHOF A, MISCHLER D.Experimental investigation of an atmospheric-open cyclone solar reactor for solid-gas thermochemical reactions[J]. Journal of solar energy engineering, transactions of the ASME, 1992, 114(3): 171-174.
[46] IMHOF A,SUTER C,STEINFELD A.Solar thermal decomposition of CaCO3 on an atmospheric-open cyclone reactor[C]// Proceedings of the Biennial Congress of the ISES 91. Denver, CO, USA, 1991.
[47] STEINFELD A, BRACK M, MEIER A, et al.A solar chemical reactor for co-production of zinc and synthesis gas[J]. Energy, 1998, 23(10): 803-814.
[48] Z′GRAGGEN A, HAUETER P, TROMMER D, et al. Hydrogen production by steam-gasification of petroleum coke using concentrated solar power reactor design, testing, and modeling[J]. International journal of hydrogen energy, 2006, 31(6): 797-811.
[49] FLAMANT G.Thermochimie solaire à hautes températures, résultats expérimentaux. Quelques perspectives d′application[J]. Revue de Physique Appliquée, 1980, 15(3): DOI:10.1051/rphysap:01980001503050300.
[50] PUIG-ARNAVAT M, TORA E A, BRUNO J C, et al.State of the art on reactor designs for solar gasification of carbonaceous feedstock[J]. Solar energy, 2013, 97: 67-84.
[51] GOKON N, TAKAHASHI S, YAMAMOTO H, et al.Thermochemical two-step water-splitting reactor with internally circulating fluidized bed for thermal reduction of ferrite particles[J]. International journal of hydrogen energy, 2008, 33(9): 2189-2199.
[52] KOEPF E, ADVANI S G, STEINFELD A, et al.A novel beam-down, gravity-fed, solar thermochemical receiver/reactor for direct solid particle decomposition: design, modeling, and experimentation[J]. International journal of hydrogen energy, 2012, 37(22): 16871-16887.
[53] MOUMIN G, TESCARI S, SUNDARRAJ P, et al.Solar treatment of cohesive particles in a directly irradiated rotary kiln[J]. Solar energy, 2019, 182: 480-490.
[54] HENEIN H, BRIMACOMBE J K, WATKINSON A P.Experimental study of transverse bed motion in rotary kilns[J]. Metallurgical transactions B, 1983, 14(2): 191-205.
[55] ABANADES S, CHARVIN P, FLAMANT G.Design and simulation of a solar chemical reactor for the thermal reduction of metal oxides: case study of zinc oxide dissociation[J]. Chemical engineering science, 2007, 62(22): 6323-6333.
[56] KANEKO H, MIURA T, FUSE A, et al.Rotary-type solar reactor for solar hydrogen production with two-step water splitting process[J]. Energy & fuels, 2007, 21(4): 2287-2293.
[57] DIVER R B,SIEGEL N P,MOSS T A,et al.Innovative solar thermochemical water splitting [R]. US California: Sandia National Laboratories, 2008.
[58] 彭昌盛, 魏茜茜, 赵婷婷, 等. 太阳能热解技术制备生物炭的研究进展[J]. 现代化工, 2022, 42(2): 61-67.
PENG C S, WEI X X, ZHAO T T, et al.Advances in production of biochar by solar pyrolysis technology[J]. Modern chemical industry, 2022, 42(2): 61-67.
[59] 李建昌, 侯雪艳, 王紫瑄, 等. 真空管式太阳能集热器研究最新进展[J]. 真空科学与技术学报, 2012, 32(10): 943-950.
LI J C, HOU X Y, WANG Z X, et al.Latest development of vacuum tube solar collectors[J]. Chinese journal of vacuum science and technology, 2012, 32(10): 943-950.
[60] AGRAFIOTIS C, VON STORCH H, ROEB M, et al.Solar thermal reforming of methane feedstocks for hydrogen and syngas production—a review[J]. Renewable and sustainable energy reviews, 2014, 29: 656-682.
[61] MCNAUGHTON R.Solar steam reforming using a closed cycle gaseous heat transfer loop[C]//Proceedings of 2012 SolarPACES,Concentrating Solar Power and Chemical Energy Systems Conference. Marrakech, Morocco, 2012.
[62] WELTE M, BARHOUMI R, ZBINDEN A, et al.Experimental demonstration of the thermochemical reduction of ceria in a solar aerosol reactor[J]. Industrial & engineering chemistry research, 2016, 55(40): 10618-10625.
[63] TOU M, MICHALSKY R, STEINFELD A.Solar-driven thermochemical splitting of CO2 and in situ separation of CO and O2 across a ceria redox membrane reactor[J]. Joule, 2017, 1(1): 146-154.
[64] WANG H S, LIU M K, KONG H, et al.Thermodynamic analysis on mid/low temperature solar methane steam reforming with hydrogen permeation membrane reactors[J]. Applied thermal engineering, 2019, 152: 925-936.
[65] DOLAN M D, BEATH A C, HLA S S, et al.An experimental and techno-economic assessment of solar reforming for H2 production[J]. International journal of hydrogen energy, 2016, 41(33): 14583-14595.
[66] HOSKINS A L, MILLICAN S L, CZERNIK C E, et al.Continuous on-Sun solar thermochemical hydrogen production via an isothermal redox cycle[J]. Applied energy, 2019, 249: 368-376.
[67] DIVER R B, FISH J D, LEVITAN R, et al.Solar test of an integrated sodium reflux heat pipe receiver/reactor for thermochemical energy transport[J]. Solar energy, 1992, 48(1): 21-30.
[68] LEVITAN R, ROSIN H, LEVY M.Chemical reactions in a solar furnace—direct heating of the reactor in a tubular receiver[J]. Solar energy, 1989, 42(3): 267-272.
[69] GOKON N, OKU Y, KANEKO H, et al.Methane reforming with CO2 in molten salt using FeO catalyst[J]. Solar energy, 2002, 72(3): 243-250.
[70] GOKON N, NAKAMURA S, HATAMACHI T, et al.Steam reforming of methane using double-walled reformer tubes containing high-temperature thermal storage Na2CO3/MgO composites for solar fuel production[J]. Energy, 2014, 68: 773-782.

基金

内蒙古工业大学博士科研启动金项目(DC2200000946); 内蒙古自治区教育厅项目(PZ2022000556)

PDF(5844 KB)

Accesses

Citation

Detail

段落导航
相关文章

/