RESEARCH PROGRESS ON RENEWABLE ENERGY SYSTEM COUPLED WITH LARGE-SCALE HYDROGEN PRODUCTION AND STORAGE
Zhang Sheng1, Zheng Jinyang2, Dai Jianfeng1, Wang Xin3, Li Haoran1
Author information+
1. China Electric Power Planning & Engineering Institute, Beijing 100120, China; 2. College of Energy Engineering, Zhejiang University, Hangzhou 310027, China; 3. Huadian Heavy Industries Co., Ltd., Beijing 100071, China
Renewable energy system coupled with large-scale hydrogen production and storage is an important way to achieve the deep integration of hydrogen energy and renewable energy in the new power system. In the review, the type and structure of renewable energy system coupled with large-scale hydrogen production and storage are introduced. The characteristics of generation side, the technical characteristics of hydrogen production and storage, and the fluctuation of demand side are also analyzed. The status of simulation software for renewable energy system is introduced. Research focuses in system model, such as the control strategy, the capacity optimization of hydrogen production and storage, and technical economy analysis, are studied in detail.
Zhang Sheng, Zheng Jinyang, Dai Jianfeng, Wang Xin, Li Haoran.
RESEARCH PROGRESS ON RENEWABLE ENERGY SYSTEM COUPLED WITH LARGE-SCALE HYDROGEN PRODUCTION AND STORAGE[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 457-465 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1473
中图分类号:
TK91
TM743
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] DING Z Y, HOU H J, YU G, et al.Performance analysis of a wind-solar hybrid power generation system[J]. Energy conversion and management, 2019, 181: 223-234. [2] 李亮荣, 彭建, 付兵, 等. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析[J]. 太阳能学报, 2022, 43(6): 508-520. LI L R, PENG J, FU B, et al.Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision[J]. Acta energiae solaris sinica, 2022, 43(6): 508-520. [3] KAABECHE A, BAKELLI Y.Renewable hybrid system size optimization considering various electrochemical energy storage technologies[J]. Energy conversion and management, 2019, 193: 162-175. [4] TARHAN C, ÇIL M A.A study on hydrogen, the clean energy of the future: hydrogen storage methods[J]. Journal of energy storage, 2021, 40: 102676. [5] LI Z, ZHANG W D, ZHANG R, et al.Development of renewable energy multi-energy complementary hydrogen energy system (a case study in China): a review[J]. Energy exploration & exploitation, 2020, 38(6): 2099-2127. [6] 孔令国. 风光氢综合能源系统优化配置与协调控制策略研究[D]. 北京: 华北电力大学, 2017. KONG L G.Research on optimal sizing and coordinated control strategy of integrated energy system of wind photovoltaic and hydrogen[D]. Beijing: North China Electric Power University, 2017. [7] 王靖, 康丽霞, 刘永忠. 化工系统消纳可再生能源的电-氢协调储能系统优化设计[J]. 化工学报, 2020, 71(3): 1131-1142. WANG J, KANG L X, LIU Y Z.Optimal design of electricity-hydrogen energy storage systems for renewable energy penetrating into chemical process systems[J]. CIESC journal, 2020, 71(3): 1131-1142. [8] 苏元鹏. 基于快速非支配排序遗传算法的风-氢储能容量优化的研究[D]. 乌鲁木齐: 新疆大学, 2017. SU Y P.The research on the optimization of wind-hydrogen storage capacity based on fast non-dominated sorting genetic algorithm Ⅱ[D]. Urumqi: Xinjiang University, 2017. [9] DINH V N, LEAHY P, MCKEOGH E, et al.Development of a viability assessment model for hydrogen production from dedicated offshore wind farms[J]. International journal of hydrogen energy, 2021, 46(48): 24620-24631. [10] NGUYEN T, ABDIN Z, HOLM T, et al.Grid-connected hydrogen production via large-scale water electrolysis[J]. Energy conversion and management, 2019, 200: 112108. [11] 黄银华, 张世钦, 刘峻, 等. 福建沿海风电出力随机性和波动性统计分析[J]. 能源与环境, 2015(4): 10-12. HUANG Y H, ZHANG S Q, LIU J, et al.Statistical analysis of randomness and fluctuation of wind power output in Fujian coastal areas[J]. Energy and environment, 2015(4): 10-12. [12] LIU F, SUN F B, LIU W B, et al.On wind speed pattern and energy potential in China[J]. Applied energy, 2019, 236: 867-876. [13] 王建学, 张耀, 万筱钟. 光伏出力特性指标体系和分类典型曲线研究[J]. 电力需求侧管理, 2017, 19(5): 8-12. WANG J X, ZHANG Y, WAN X Z.Research of index system and typical curves on photovoltaic power output characteristics[J]. Power demand side management, 2017, 19(5): 8-12. [14] 中国气象局风能太阳能中心. 中国风能太阳能资源年景公报(2021 年)[R/OL]. (2022-04-28)[2022-09-26]. http://www.cma.gov.cn/zfxxgk/gknr/qxbg/202204/t20220429_4798342. html. 15 CMA Wind and Solar Energy Centre. China wind and solar energy resources bulletin (2021)[R/OL]. (2022-04-28)[2022-09-26]. http://www.cma.gov.cn/zfxxgk/gknr/qxbg/202204/t20220429_4798342.html. [15] CHAI S Q, ZHANG G J, LI G Q, et al.Industrial hydrogen production technology and development status in China: a review[J]. Clean technologies and environmental policy, 2021, 23(7): 1931-1946. [16] CHI J, YU H M.Water electrolysis based on renewable energy for hydrogen production[J]. Chinese journal of catalysis, 2018, 39(3): 390-394. [17] 马晓锋, 张舒涵, 何勇, 等. PEM电解水制氢技术的研究现状与应用展望[J]. 太阳能学报, 2022, 43(6): 420-427. MA X F, ZHANG S H, HE Y, et al.Research status and application prospect of PEM electrolysis water technology for hydrogen production[J]. Acta energiae solaris sinica, 2022, 43(6): 420-427. [18] 张轩, 王凯, 樊昕晔, 等. 电解水制氢成本分析[J]. 现代化工, 2021, 41(12): 7-11. ZHANG X, WANG K, FAN X Y, et al.Cost analysis on hydrogen production via water electrolysis[J]. Modern chemical industry, 2021, 41(12): 7-11. [19] 张轩, 樊昕晔, 吴振宇, 等. 氢能供应链成本分析及建议[J]. 化工进展, 2022, 41(5): 2364-2371. ZHANG X, FAN X Y, WU Z Y, et al.Hydrogen energy supply chain cost analysis and suggestions[J]. Chemical industry and engineering progress, 2022, 41(5): 2364-2371. [20] DUAN Z X, SHI K. Review and problem analysis on the development of hydrogen fueling stations in China[EB/OL]. (2021-10-18). https://doi.org/10.1115/PVP202 1-61938. [21] 郑津洋, 胡军, 韩武林, 等. 中国氢能承压设备风险分析和对策的几点思考[J]. 压力容器, 2020, 37(6): 39-47. ZHENG J Y, HU J, HAN W L, et al.Risk analysis and some countermeasures of pressure equipment for hydrogen energy in China[J]. Pressure vessel technology, 2020, 37(6): 39-47. [22] REN X S, DONG L C, XU D, et al.Challenges towards hydrogen economy in China[J]. International journal of hydrogen energy, 2020, 45(59): 34326-34345. [23] HUANG Y J, CHENG Y H, ZHANG J Y.A review of high density solid hydrogen storage materials by pyrolysis for promising mobile applications[J]. Industrial & engineering chemistry research, 2021, 60(7): 2737-2771. [24] ALIA S M.Current research in low temperature proton exchange membrane-based electrolysis and a necessary shift in focus[J]. Current opinion in chemical engineering, 2021, 33: 100703. [25] 王培灿, 万磊, 徐子昂, 等. 碱性膜电解水制氢技术现状与展望[J]. 化工学报, 2021, 72(12): 6161-6175. WANG P C, WAN L, XU Z A, et al.Hydrogen production based-on anion exchange membrane water electrolysis: a critical review and perspective[J]. CIESC journal, 2021, 72(12): 6161-6175. [26] 孙传帅. 计及氢负荷的电源规划研究[D]. 大连: 大连理工大学, 2021. SUN C S.Research on generation expansion planning considering hydrogen load[D]. Dalian: Dalian University of Technology, 2021. [27] 彭生江, 孙传帅, 妥建军, 等. 面向统一能源系统的中长期氢负荷预测[J]. 中国电力, 2022, 55(1): 84-90. PENG S J, SUN C S, TUO J J, et al.Medium and long-term hydrogen load forecast for unified energy system[J]. Electric power, 2022, 55(1): 84-90. [28] 郑津洋, 马凯, 叶盛, 等. 我国氢能高压储运设备发展现状及挑战[J]. 压力容器, 2022, 39(3): 1-8. ZHENG J Y, MA K, YE S, et al.Development status and challenges of equipment for storage and transportation of high-pressure gaseous hydrogen in China[J]. Pressure vessel technology, 2022, 39(3): 1-8. [29] BARING-GOULD E, GREEN H, DIJK V V, et al. Hybrid2: the hybrid power system simulation model[EB/OL].1996-12-31, DOI: https://www.osti.gov/biblio/447484. [30] KAUR D, CHEEMA P S.Software tools for analyzing the hybrid renewable energy sources:a review[C]//2017 International Conference on Inventive Systems and Control (ICISC). Coimbatore, India, 2017: 1-4. [31] MANWELL J F, ROGERS A, HAYMAN G, et al. Hybrid2: a hybrid system simulation model: theory manual[EB/OL].1999-1-1, DOI: https://www.researchgate.net/publication/239547878_Hybrid2_A_Hybrid_System_ Simulation_ Model_Theory_Manual. [32] SINHA S, CHANDEL S S.Review of software tools for hybrid renewable energy systems[J]. Renewable and sustainable energy reviews, 2014, 32: 192-205. [33] KUMAR P, DEOKAR S.Designing and simulation tools of renewable energy systems: review literature[C]//Progress in Advanced Computing and Intelligent Engineering, Singapore, 2018: 315-324. [34] HOMER ENERGY.Energy modeling software for hybrid renewable energy systems[J/OL]. https://www.homerener gy.com/. [35] 王侃宏, 赵政通, 罗景辉. 风光氢储系统的两阶优化匹配分析[J]. 科学技术与工程, 2020, 20(26): 10790-10794. WANG K H, ZHAO Z T, LUO J H.Two-order optimization matching analysis of scenery hydrogen storage system[J]. Science technology and engineering, 2020, 20(26): 10790-10794. [36] 蔡国伟, 陈冲, 孔令国, 等. 风电/光伏/制氢/超级电容器并网系统建模与控制[J]. 电网技术, 2016, 40(10): 2982-2990. CAI G W, CHEN C, KONG L G, et al.Modeling and control of grid-connected system of wind/PV/electrolyzer and SC[J]. Power system technology, 2016, 40(10): 2982-2990. [37] 荆涛, 陈庚, 王子豪, 等. 风光互补发电耦合氢储能系统研究综述[J]. 中国电力, 2022, 55(1): 75-83. JING T, CHEN G, WANG Z H, et al.Research overview on the integrated system of wind-solar hybrid power generation coupled with hydrogen-based energy storage[J]. Electric power, 2022, 55(1): 75-83. [38] TAFTICHT T, AGBOSSOU K, DOUMBIA M L, et al.An improved maximum power point tracking method for photovoltaic systems[J]. Renewable energy, 2008, 33(7): 1508-1516. [39] TORREGLOSA J P, GARCÍA P, FERNÁNDEZ L M, et al. Energy dispatching based on predictive controller of an off-grid wind turbine/photovoltaic/hydrogen/battery hybrid system[J]. Renewable energy, 2015, 74: 326-336. [40] SINGH S, CHAUHAN P, SINGH N.Capacity optimization of grid connected solar/fuel cell energy system using hybrid ABC-PSO algorithm[J]. International journal of hydrogen energy, 2020, 45(16): 10070-10088. [41] 温源. 风电制氢能量管理系统控制方法研究[D]. 北京: 华北电力大学, 2019. WEN Y.Research on control strategy of energy management system of wind power and hydrogen[D]. Beijing: North China Electric Power University, 2019. [42] 袁铁江, 胡克林, 关宇航, 等. 风电-氢储能与煤化工多能耦合系统及其氢储能子系统的EMR建模[J]. 高电压技术, 2015, 41(7): 2156-2164. YUAN T J, HU K L, GUAN Y H, et al.Modeling on hydrogen producing progress in EMR based wind power-hydrogen energy storage and coal chemical pluripotent coupling system[J]. High voltage engineering, 2015, 41(7): 2156-2164. [43] KHALILNEJAD A, RIAHY G H.A hybrid wind-PV system performance investigation for the purpose of maximum hydrogen production and storage using advanced alkaline electrolyzer[J]. Energy conversion and management, 2014, 80: 398-406. [44] 张继红, 阚圣钧, 化玉伟, 等. 基于氢气储能的热电联供微电网容量优化配置[J]. 太阳能学报, 2022, 43(6): 428-434. ZHANG J H, KAN S J, HUA Y W, et al.Capacity optimization of CHP microgrid based on hydrogen energy storage[J]. Acta energiae solaris sinica, 2022, 43(6): 428-434. [45] 蒋康乐. 风光互补联合制氢系统研究及环境效益评价[D]. 邯郸: 河北工程大学, 2018. JIANG K L.Research and environmental benefit evaluation of wind-solar hybrid hydrogen production system[D]. Handan: Hebei University of Engineering, 2018. [46] HADIDIAN MOGHADDAM M J, KALAM A, NOWDEH S A, et al. Optimal sizing and energy management of stand-alone hybrid photovoltaic/wind system based on hydrogen storage considering LOEE and LOLE reliability indices using flower pollination algorithm[J]. Renewable energy, 2019, 135: 1412-1434. [47] FELLAH B, BENYOUCEF B, BELARBI M, et al.Optimal sizing of a hybrid photovoltaic/wind system supplying a desalination unit[J]. Journal of engineering science and technology, 2018, 13(6): 1816-1833. [48] 汪为. 间歇性可再生能源发电-氢生产及储能联合系统的研究[D]. 武汉: 华中科技大学, 2016. WANG W.Research on integrated system of intermittent renewable power generation-hydrogen production and energy storage[D]. Wuhan: Huazhong University of Science and Technology, 2016. [49] 袁铁江, 李国军, 张增强, 等. 风电-氢储能与煤化工多能耦合系统设备投资规划优化建模[J]. 电工技术学报, 2016, 31(14): 21-30. YUAN T J, LI G J, ZHANG Z Q, et al.Optimal modeling on equipment investment planning of wind power-hydrogen energy storage and coal chemical pluripotent coupling system[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 21-30.