针对新能源汽车充电(G2V)三相整流器为研究对象,研究基于模型预测控制(model predictive control, MPC)的充电控制策略。传统的MPC算法需要准确的系统模型参数,而当控制器中使用的模型参数与主电路实际参数不匹配时,控制性能可能发生恶化,影响整流器充电控制性能。针对此问题,该文将系统参数不匹配作为扩张状态观测器(extended state observer, ESO)扩张出来的扰动项而进行估计,并将扰动进行补偿,从而设计一种基于ESO的MPC充电控制策略。该方法仅使用了系统的输入和输出数据,而不需要精确的系统模型,因此即使模型参数不匹配时,ESO也能够将不匹配项作为扰动而对预测电流进行准确估计,从而提高MPC对参数变化及不匹配的鲁棒性。仿真与实验结果验证了该方法的可行性和有效性。
Abstract
This paper focuses on the model predictive charging control strategy for renewable energy vehicle charging (G2V) rectifier. The traditional model predictive control (MPC) algorithm requires accurate system model parameters. Therefore, if the model parameters used in the controller are inaccurate, the performance may deteriorate, affecting the charging control performance of the rectifier. To address this issue, the MPC based on the extended state observer (ESO) for G2V charging rectifier is proposed. The parameter mismatch is regarded as the extended disturbance term and estimated by the extended state observer (ESO). The proposed method only utilizes system input and output data and does not need accurate system parameters. When there exists a parameter mismatch, it can be regarded as a disturbance and be estimated by ESO, thus achieving an accurate estimation of the predicted current. Therefore, the robustness of the controller against the parameter mismatch is enhanced. Simulation and experimental results verify the feasibility and effectiveness of the proposed MPC based on ESO.
关键词
模型预测控制 /
新能源汽车 /
扰动抑制 /
鲁棒性 /
扩张状态观测器 /
模型参数不匹配
Key words
model predictive control /
renewable energy vehicles /
disturbance rejection /
robustness /
extended state observer /
model parameters mismatch
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 吴智泉, 贾纯超, 陈磊, 等. 新型电力系统中储能创新方向研究[J]. 太阳能学报, 2021, 42(10): 444-451.
WU Z Q, JIA C C, CHEN L, et al.Research on innovative direction of energy storage in new power system construction[J]. Acta energiae solaris sinica, 2021, 42(10): 444-451.
[2] WANG Z K, CHING T W, HUANG S J, et al.Challenges faced by electric vehicle motors and their solutions[J]. IEEE access, 2020, 9: 5228-5249.
[3] 贺瑜环, 杨秀媛, 陈麒宇, 等. 电动汽车智能充放电控制与应用综述[J]. 发电技术, 2021, 42(2): 180-192.
HE Y H, YANG X Y, CHEN Q Y, et al.Review of intelligent charging and discharging control and application of electric vehicles[J]. Power generation technology, 2021, 42(2): 180-192.
[4] HOSSEINI S H, GHAZI R, HEYDARI-DOOSTABAD H.An extendable quadratic bidirectional DC-DC converter for V2G and G2V applications[J]. IEEE transactions on industrial electronics, 2021, 68(6): 4859-4869.
[5] 付文聪. 三相电压型PWM整流器滑模控制策略研究[D]. 重庆: 重庆理工大学, 2022.
FU W C.Three-phase voltage source PWM rectifier and its sliding mode control strategy[D]. Chongqing: Chongqing University of Technology, 2022.
[6] 王归新, 金申义. 基于三相电压型PWM整流器控制策略研究[J]. 电气传动, 2019, 49(10): 34-38, 74.
WANG G X, JIN S Y.Research on control strategy of three-phase voltage source PWM rectifier[J]. Electric drive, 2019, 49(10): 34-38, 74.
[7] 张春雷. 高功率因数AC/DC变换器控制技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.
ZHANG C L.Research on control technology of high power factor AC/DC converter[D]. Harbin: Harbin Engineering University, 2021.
[8] 张晓莹, 付光杰, 张晓旭. 三相PWM整流器滑模控制系统设计[J]. 电子设计工程, 2022, 30(5): 22-27.
ZHANG X Y, FU G J, ZHANG X X.Design of sliding mode control system for three-phase PWM rectifier[J]. Electronic design engineering, 2022, 30(5): 22-27.
[9] 洪剑峰, 张兴, 曹仁贤, 等. 三电平并网逆变器的改进型有限集模型预测控制[J]. 太阳能学报, 2022, 43(8): 67-74.
HONG J F, ZHANG X, CAO R X, et al.Improved finite control set model predictive control of three-level grid-connected inverter[J]. Acta energiae solaris sinica, 2022, 43(8): 67-74.
[10] LINDER A, KENNEL R.Model predictive control for electrical drives[C]//2005 IEEE 36th Power Electronics Specialists Conference. Dresden, Germany, 2006: 1793-1799.
[11] CAO Q S, ZHANG J W, CHANG H C, et al.Model predictive control of three-phase rectifier for electric vehicle charging[C]//2021 IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics (PRECEDE). Jinan, China, 2022: 915-920.
[12] ZHANG Y C, WANG X, YANG H T, et al.Robust predictive current control of induction motors based on linear extended state observer[J]. Chinese journal of electrical engineering, 2021, 7(1): 94-105.
[13] PHUC P N, VANSOMPEL H, BOZALAKOV D, et al.Data-driven online temperature compensation for robust field-oriented torque-controlled induction machines[J]. IET electric power applications, 2019, 13(12): 1954-1963.
[14] YANG H T, ZHANG Y C, LIANG J, et al.Robust deadbeat predictive power control with a discrete-time disturbance observer for PWM rectifiers under unbalanced grid conditions[J]. IEEE transactions on power electronics, 2019, 34(1): 287-300.
[15] KHALILZADEH M, VAEZ-ZADEH S, RODRIGUEZ J, et al.Model-free predictive control of motor drives and power converters: a review[J]. IEEE access, 2021, 9: 105733-105747.
[16] 胡寿松. 自动控制原理[M]. 5版. 北京: 科学出版社, 2007: 513-516.
HU S S.Principle of automatic control[M]. 5th ed. Beijing: Science Press, 2007: 513-516.
[17] 郑启圣. 基于模型预测控制的三相电压型PWM整流器研究[D]. 徐州: 中国矿业大学, 2021.
ZHENG Q S.Research on three-phase voltage type PWM rectifier based on model predictive control[D]. Xuzhou: China University of Mining and Technology, 2021.
基金
内蒙古自然科学基金(2020BS05027); 内蒙古自治区科技重大专项(2020ZD0014); 内蒙古自治区高等学校青年科技英才支持计划(NJYT22082); 自治区直属高校基本科研业务费项目(JY20220092)