基于模糊C均值聚类和概率神经网络的PEMFC故障诊断方法研究

黄赵军, 苏建徽, 解宝, 施永, 黄诚, 瞿晓丽

太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 475-483.

PDF(2067 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2067 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 475-483. DOI: 10.19912/j.0254-0096.tynxb.2022-1480

基于模糊C均值聚类和概率神经网络的PEMFC故障诊断方法研究

  • 黄赵军1,2, 苏建徽1,2, 解宝1,2, 施永1,2, 黄诚1,2, 瞿晓丽2
作者信息 +

RESEARCH ON PEMFC FAULT DIAGNOSIS METHOD BASED ON FUZZY C MEANS CLUSTERING AND PROBABILISTIC NEURAL NETWORK

  • Huang Zhaojun1,2, Su Jianhui1,2, Xie Bao1,2, Shi Yong1,2, Huang Cheng1,2, Qu Xiaoli2
Author information +
文章历史 +

摘要

为解决质子交换膜燃料电池电堆的故障分类问题,提出一种基于模糊C均值聚类和概率神经网络的故障诊断新方法。首先基于修正后的燃料电池电堆Fouquet等效电路模型,并结合电堆阻抗谱实验数据,得到电堆的正常、水淹、膜干和氧饥饿4种工作状态与电路模型参数的对应关系,进而提取合适的故障特征量作为聚类算法的特征输入。然后,利用模糊C均值聚类算法对故障样本进行聚类,形成标准聚类中心,并在此基础上,采用概率神经网络算法对故障样本实现多故障分类,有效剔除奇异数据并提高模型分类的正确率。最后,对200组实验数据进行实例分析,并与支持向量机和K最邻近方法进行对比,结果表明所提方法能对4种电堆工作状态进行快速识别,分类准确率达98.33%,验证了所提算法的有效性。

Abstract

To solve the problem of fault classification of proton exchange membrane fuel cells stack, one new fault diagnosis method based on fuzzy C means clustering and probabilistic neural network is proposed in this paper. Firstly, this paper is based on the modified Fouquet equivalent circuit model of the fuel cells stack and combines the experimental data of the stack EIS. The corresponding relationship between the four working states of the stack, namely normal, flooding, membrane drying and oxygen starvation, and the circuit model parameters is obtained. The appropriate fault characteristic quantity is extracted as the feature input of the clustering algorithm. Then, the paper uses the fuzzy C means clustering algorithm to cluster the fault sample data to form a standard clustering center. The probabilistic neural network algorithm is used to achieve multi-fault classification for the fault samples on this basis, which can effectively eliminate the singular data and improve the accuracy of the fault classification. Finally, the paper analyzes 200 sets of experimental data, and compares it with the support vector machine and the K-nearest neighbor method. The analysis results show that the method proposed in the paper can quickly identify the four working states of the stack, and the classification accuracy rate reaches 98.33%, which verifies the effectiveness of the proposed algorithm.

关键词

质子交换膜燃料电池 / 聚类算法 / 神经网络 / 故障诊断 / 故障特征量

Key words

proton exchange membrane fuel cells / clustering algorithms / neural networks / fault detection / fault characteristic quantity

引用本文

导出引用
黄赵军, 苏建徽, 解宝, 施永, 黄诚, 瞿晓丽. 基于模糊C均值聚类和概率神经网络的PEMFC故障诊断方法研究[J]. 太阳能学报. 2024, 45(1): 475-483 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1480
Huang Zhaojun, Su Jianhui, Xie Bao, Shi Yong, Huang Cheng, Qu Xiaoli. RESEARCH ON PEMFC FAULT DIAGNOSIS METHOD BASED ON FUZZY C MEANS CLUSTERING AND PROBABILISTIC NEURAL NETWORK[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 475-483 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1480
中图分类号: TM911.4   

参考文献

[1] 金致含, 苏建徽, 施永, 等. 基于二进制序列的燃料电池宽频带EIS测试[J]. 太阳能学报, 2022, 43(7): 1-8.
JIN Z H, SU J H, SHI Y, et al.Broadband EIS test of fuel cell based on binary sequences[J]. Acta energiae solaris sinica, 2022, 43(7): 1-8.
[2] 陈维荣, 刘嘉蔚, 李奇, 等. 质子交换膜燃料电池故障诊断方法综述及展望[J]. 中国电机工程学报, 2017, 37(16): 4712-4721, 4896.
CHEN W R, LIU J W, LI Q, et al.Review and prospect of fault diagnosis methods for proton exchange membrane fuel cell[J]. Proceedings of the CSEE, 2017, 37(16): 4712-4721, 4896.
[3] REN P, PEI P C, LI Y H, et al.Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions[J]. Progress in energy and combustion science, 2020, 80: 100859.
[4] 马睿, 党翰斌, 张钰奇, 等. 质子交换膜燃料电池系统故障机理分析及故障诊断方法研究综述[J/OL]. 中国电机工程学报, 2022. https://doi.org/10.13334/j.0258-8013.pcsee.222031.
MA R, DANG H B, ZHANG Y Q, et al. A review on failure mechanism analysis and diagnosis for proton exchange membrane fuel cell systems[J/OL]. Proceedings of the CSEE, 2022. https://doi.org/10.13334/j.0258-8013.pcsee.222031.
[5] WANG J B, YANG B, ZENG C Y, et al.Recent advances and summarization of fault diagnosis techniques for proton exchange membrane fuel cell systems: a critical overview[J]. Journal of power sources, 2021, 500: 229932.
[6] 王筱彤, 李奇, 王天宏, 等. 基于离散区间二进制序列激励信号的燃料电池EIS测量及故障诊断方法[J]. 中国电机工程学报, 2020, 40(14): 4526-4537, 4732.
WANG X T, LI Q, WANG T H, et al.EIS measurement based on DIBS excitation signal and fault diagnosis method of fuel cell[J]. Proceedings of the CSEE, 2020, 40(14): 4526-4537, 4732.
[7] 刘相万, 杨扬, 朱文超, 等. 基于二阶RQ-RLC模型的质子交换膜燃料电池水管理故障诊断[J]. 中国电机工程学报, 2022, 42(21): 7893-7905.
LIU X W, YANG Y, ZHU W C, et al.Second-order RQ-RLC model-based fault diagnosis for water management in proton exchange membrane fuel cells[J]. Proceedings of the CSEE, 2022, 42(21): 7893-7905.
[8] RUBIO M A, BETHUNE K, URQUIA A, et al.Proton exchange membrane fuel cell failure mode early diagnosis with wavelet analysis of electrochemical noise[J]. International journal of hydrogen energy, 2016, 41(33): 14991-15001.
[9] MAO L, JACKSON L, DUNNETT S.Fault diagnosis of practical polymer electrolyte membrane (PEM) fuel cell system with data-driven approaches[J]. Fuel cells, 2017, 17(2): 247-258.
[10] ZHANG X X, ZHOU J Z, CHEN W R.Data-driven fault diagnosis for PEMFC systems of hybrid tram based on deep learning[J]. International journal of hydrogen energy, 2020, 45(24): 13483-13495.
[11] 王克勇, 鲍大同, 周苏. 基于数据驱动的车用燃料电池故障在线自适应诊断算法[J]. 吉林大学学报(工学版), 2022, 52(9): 2107-2118.
WANG K Y, BAO D T, ZHOU S.Data-driven online adaptive diagnosis algorithm towards vehicle fuel cell fault diagnosis[J]. Journal of Jilin University (engineering and technology edition), 2022, 52(9): 2107-2118.
[12] LI Z L, GIURGEA S, OUTBIB R, et al.Fault diagnosis and novel fault type detection for PEMFC system based on spherical-shaped multiple-class support vector machine[C]//2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Besacon, France, 2014: 1628-1633.
[13] CHOI J, SIM J, OH H, et al.Resistance separation of polymer electrolyte membrane fuel cell by polarization curve and electrochemical impedance spectroscopy[J]. Energies, 2021, 14(5): 1491.
[14] PIVAC I, BEZMALINOVIĆ D, BARBIR F.Catalyst degradation diagnostics of proton exchange membrane fuel cells using electrochemical impedance spectroscopy[J]. International journal of hydrogen energy, 2018, 43(29): 13512-13520.
[15] ZHENG Z X, PÉRA M C, HISSEL D, et al. A double-fuzzy diagnostic methodology dedicated to online fault diagnosis of proton exchange membrane fuel cell stacks[J]. Journal of power sources, 2014, 271: 570-581.
[16] LU H X, CHEN J, YAN C Z, et al.On-line fault diagnosis for proton exchange membrane fuel cells based on a fast electrochemical impedance spectroscopy measurement[J]. Journal of power sources, 2019, 430: 233-243.
[17] JEPPESEN C, ARAYA S S, SAHLIN S L, et al.Fault detection and isolation of high temperature proton exchange membrane fuel cell stack under the influence of degradation[J]. Journal of power sources, 2017, 359: 37-47.
[18] LIN R H, XI X N, WANG P N, et al.Review on hydrogen fuel cell condition monitoring and prediction methods[J]. International journal of hydrogen energy, 2019, 44(11): 5488-5498.
[19] CHEN H C, ZHAO X, ZHANG T, et al.The reactant starvation of the proton exchange membrane fuel cells for vehicular applications: a review[J]. Energy conversion and management, 2019, 182: 282-298.
[20] PEI P C, LI Y H, XU H C, et al.A review on water fault diagnosis of PEMFC associated with the pressure drop[J]. Applied energy, 2016, 173: 366-385.
[21] 张雪霞, 蒋宇, 孙腾飞, 等. 质子交换膜燃料电池水淹和膜干故障诊断研究综述[J]. 西南交通大学学报, 2020, 55(4): 828-838, 864.
ZHANG X X, JIANG Y, SUN T F, et al.Review on fault diagnosis for flooding and drying in proton exchange membrane fuel cells[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 828-838, 864.
[22] FOUQUET N, DOULET C, NOUILLANT C, et al.Model based PEM fuel cell state-of-health monitoring via AC impedance measurements[J]. Journal of power sources, 2006, 159(2): 905-913.
[23] KO D, KANG Y, YANG J, et al.Polarization characteristics and property distributions of a proton exchange membrane fuel cell under cathode starvation conditions[J]. International journal of energy research, 2010, 34(10): 865-877.
[24] 毕锐, 丁明, 徐志成, 等. 基于模糊C均值聚类的光伏阵列故障诊断方法[J]. 太阳能学报, 2016, 37(3): 730-736.
BI R, DING M, XU Z C, et al.PV array fault diagnosis based on FCM[J]. Acta energiae solaris sinica, 2016, 37(3): 730-736.
[25] 刘嘉蔚, 李奇, 陈维荣, 等. 基于多分类相关向量机和模糊C均值聚类的有轨电车用燃料电池系统故障诊断方法[J]. 中国电机工程学报, 2018, 38(20): 6045-6052.
LIU J W, LI Q, CHEN W R, et al.A fault diagnosis method of fuel cell systems for tramways based on the multi-class relevance vector machine and fuzzy C means clustering[J]. Proceedings of the CSEE, 2018, 38(20): 6045-6052.
[26] 张丹, 赵吉文, 董菲, 等. 基于概率神经网络算法的永磁同步直线电机局部退磁故障诊断研究[J]. 中国电机工程学报, 2019, 39(1): 296-306, 344.
ZHANG D, ZHAO J W, DONG F, et al.Partial demagnetization fault diagnosis research of permanent magnet synchronous motors based on the PNN algorithm[J]. Proceedings of the CSEE, 2019, 39(1): 296-306, 344.
[27] 董和夫, 张晓虎, 乔超杰, 等. 基于麻雀搜索算法优化概率神经网络的变压器故障诊断[J]. 电工技术, 2022(4):104-107.
DONG H F,ZHANG X H,QIAO C J,et al.Fault diagnosis of transformer based on probabilistic neural network optimized by sparrow search algorithm[J]. Electric engineering, 2022(4): 104-107.
[28] 邵阳, 武建文, 马速良, 等. 用于高压断路器机械故障诊断的AM-ReliefF特征选择下集成SVM方法[J]. 中国电机工程学报, 2021, 41(8): 2890-2901.
SHAO Y, WU J W, MA S L, et al.Integrated SVM method with AM-ReliefF feature selection for mechanical fault diagnosis of high voltage circuit breakers[J]. Proceedings of the CSEE, 2021, 41(8): 2890-2901.
[29] 周苏, 韩秋玲, 胡哲, 等. 质子交换膜燃料电池故障诊断的模式识别方法[J]. 同济大学学报(自然科学版), 2017, 45(3): 408-412.
ZHOU S, HAN Q L, HU Z, et al.Pattern recognition method for proton exchange membrane fuel cell fault diagnosis[J]. Journal of Tongji University (natural science), 2017, 45(3): 408-412.
[30] 文武, 李培强. 基于K中心点和粗糙集的KNN分类算法[J]. 计算机工程与设计, 2018, 39(11): 3389-3394.
WEN W, LI P Q.K neighbor classification algorithm based on K center point and rough set[J]. Computer engineering and design, 2018, 39(11): 3389-3394.
[31] 姚彬修, 倪建成, 于苹苹, 等. 一种基于Canopy和粗糙集的CRS-KNN文本分类算法[J]. 计算机工程与应用, 2017, 53(11): 172-177.
YAO B X, NI J C, YU P P, et al.CRS-KNN text classification algorithm based on Canopy and rough set[J]. Computer engineering and applications, 2017, 53(11): 172-177.

基金

中央高校基本科研业务费专项资金(PA2021GDGP0060; JZ2021HGQA0194); 安徽省自然科学基金青年项目(2208085QE165)

PDF(2067 KB)

Accesses

Citation

Detail

段落导航
相关文章

/