基于新能源随机波动以及低温电解制氢系统转化效率较低且无法切换到发电状态,提出一种高温电解制氢变负载情形下的高效最大产氢点多模型优化控制方法。首先构建计及辅助设备在内的高温固体氧化物电解系统整体协同运行的多能耦合优化模型,分析其影响系统电解的工作温度、电流强度、物料流速等诸多因素并导出高能安全产氢率;其次,在PID控制的基础上,给出一种既能实现变负荷同步准确跟踪产氢轨迹和优化电网调控需求,又能最大优化产氢效率的自适应时变线性变参数模型预测控制方法;最后,通过算例仿真验证所提方法较PID控制电解系统升温速率快,过渡时间短,电解电流、水蒸气流速、H2流速、电炉功率都能平稳过渡至稳态点,具有一定的理论和实用价值。
Abstract
Based on the random fluctuation of new energy sources and the low conversion efficiency of the low-temperature electrolytic hydrogen production system and the inability to switch to the power generation state,an efficient multi model optimal control method for maximum hydrogen production points under the variable load condition of high-temperature electrolytic hydrogen production is proposed. Firstly,a multi-energy coupling optimization model for the overall coordinated operation of the high-temperature solid oxide electrolysis system including auxiliary equipment is constructed,and many factors affecting the working temperature,current intensity,material flow rate and other factors of the system electrolysis are analyzed,and the high-energy safe hydrogen production rate is derived. Secondly,on the basis of PID control, an adaptive time-varying linear variable parameter model predictive control method is proposed,which can not only realize synchronous and accurate tracking of hydrogen production trajectory and optimize the power grid regulation demand,but also maximize the hydrogen production efficiency. Finally,an example is given to verify that the proposed method has faster temperature rise rate and shorter transition time than the PID control electrolysis system,and the electrolysis current,steam flow rate,hydrogen flow rate and electric furnace power can all smoothly transition to the steady point,which has certain theoretical and practical value.
关键词
高温 /
制氢 /
固体氧化物 /
新能源消纳 /
多能耦合 /
模型预测控制
Key words
high temperature /
hydrogen production /
solid oxide /
new energy absorption /
multi-energy coupling /
model predictive control
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王培灿, 万磊, 徐子昂, 等. 碱性膜电解水制氢技术现状与展望[J]. 化工学报, 2021, 72(12): 6161-6175.
WANG P C, WAN L, XU Z A, et al.Hydrogen production based-on anion exchange membrane water electrolysis: a critical review and perspective[J]. CIESC journal, 2021, 72(12): 6161-6175.
[2] 张学, 裴玮, 谭建鑫, 等. 基于附加电压平衡器的可再生能源直流制氢装置接地环流抑制方法[J]. 中国电机工程学报, 2021, 41(17): 5936-5947.
ZHANG X, PEI W, TAN J X, et al.The suppression method of grounding circulating current for renewable energy DC hydrogen production unit based on additional voltage balancer[J]. Proceedings of the CSEE, 2021, 41(17): 5936-5947.
[3] 李珂, 张横, 郑晓宇, 等. 预磁极化条件下PEM水电解制氢特性与效率研究[J]. 太阳能学报, 2022, 43(6): 321-326.
LI K, ZHANG H, ZHENG X Y, et al.Study on characteristics and efficiency of hydrogen production by pem water electrolysis under pre-magnetic polarization[J]. Acta energiae solaris sinica, 2022, 43(6): 321-326.
[4] 张晨佳, 蔡军, 张玉魁, 等. 基于热力学平衡的高温固体氧化物电解水制氢模拟[J]. 太阳能学报, 2021, 42(9): 210-217.
ZHANG C J, CAI J, ZHANG Y K, et al.Simulation of high temperature solid oxide water electrolysis for hydrogen production based on thermodynamic equilibrium[J]. Acta energiae solaris sinica, 2021, 42(9): 210-217.
[5] 李佳蓉, 林今, 邢学韬, 等. 主动配电网中基于统一运行模型的电制氢(P2H)模块组合选型与优化规划[J]. 中国电机工程学报, 2021, 41(12): 4021-4033.
LI J R, LIN J, XING X T, et al.Technology portfolio selection and optimal planning of power-to-hydrogen(P2H) modules in active distribution network[J]. Proceedings of the CSEE, 2021, 41(12): 4021-4033.
[6] 李佳蓉, 林今, 肖晋宇, 等. 面向可再生能源消纳的电化工(P2X)技术分析及其能耗水平对比[J]. 全球能源互联网, 2020, 3(1): 86-96.
LI J R, LIN J, XIAO J Y, et al.Technical and energy consumption comparison of power-to-chemicals(P2X) technologies for renewable energy integration[J]. Journal of global energy interconnection, 2020, 3(1): 86-96.
[7] 张勇, 彭勇刚, 韦巍. 计及制氢效率的光-储-氢系统协调控制策略研究[J]. 太阳能学报, 2021, 42(11): 67-75.
ZHANG Y, PENG Y G, WEI W.Coordination control for pv, storage and hydrogen system considering hydrogen energy conversion efficiency[J]. Acta energiae solaris sinica, 2021, 42(11): 67-75.
[8] XING X T, LIN J, SONG Y H, et al.Intermodule management within a large-capacity high-temperature power-to-hydrogen plant[J]. IEEE transactions on energy conversion, 2020, 35(3): 1432-1442.
[9] 杨勤, 刘建国, 张晨佳, 等. 高温固体氧化物电解水制氢系统效率分析[J]. 电力电子技术, 2020, 54(12): 28-31, 36.
YANG Q, LIU J G, ZHANG C J, et al.Efficiency analysis of hydrogen production system using high temperature solid oxide water electrolyzer[J]. Power electronics, 2020, 54(12): 28-31, 36.
[10] XIONG Y F, CHEN L J, ZHENG T W, et al.Electricity-heat-hydrogen modeling of hydrogen storage system considering off-design characteristics[J]. IEEE access, 2021, 9: 156768-156777.
[11] ANTONY A, MAHESHWARI N K, RAO A R.A generic methodology to evaluate economics of hydrogen production using energy from nuclear power plants[J]. International journal of hydrogen energy, 2017, 42(41): 25813-25823.
[12] 江悦, 沈小军. 碱性电解槽制氢设备数字孪生体构建及应用[J]. 高电压技术, 2022, 48(5): 1673-1683.
JIANG Y, SHEN X J.Construction and application of digital twin in hydrogen production system of alkaline water electrolyzer[J]. High voltage engineering, 2022, 48(5): 1673-1683.
[13] 李军舟, 赵晋斌, 曾志伟, 等. 具有动态调节特性的光伏制氢双阵列直接耦合系统优化策略[J]. 电网技术, 2022, 46(5): 1712-1721.
LI J Z, ZHAO J B, ZENG Z W, et al.Optimization strategy of photovoltaic hydrogen production dual array direct coupling system with dynamic regulation characteristics[J]. Power system technology, 2022, 46(5): 1712-1721.
[14] 邢学韬, 林今, 宋永华, 等. 基于高温电解的大规模电力储能技术[J]. 全球能源互联网, 2018, 1(3): 303-312.
XING X T, LIN J, SONG Y H, et al.Large scale energy storage technology based on high-temperature electrolysis[J]. Journal of global energy interconnection, 2018, 1(3): 303-312.
[15] SANANDAJI B M, VINCENT T L, COLCLASURE A M, et al.Modeling and control of tubular solid-oxide fuel cell systems: II. Nonlinear model reduction and model predictive control[J]. Journal of power sources, 2011, 196(1): 208-217.
[16] XING X T, LIN J, WAN C, et al.Model predictive control of LPC-looped active distribution network with high penetration of distributed generation[J]. IEEE transactions on sustainable energy, 2017, 8(3): 1051-1063.
基金
新疆维吾尔自治区自然科学基金(2021D01C044); 国家自然科学基金(52067020)