考虑风电场接入电网时,传统方向元件在短路故障发生时易受到风电场内部电力电子器件动态特性的干扰影响,导致频率特性偏移,系统参数不稳定和弱馈性等问题,使继电保护装置不能及时或正确判断故障发生区域。针对上述问题,首先对含有风电场的故障附加网络进行分析,寻找故障发生后纵联保护安装处各测量点电气量之间的关联性,确定其故障逻辑关系。其次通过对常用的相模变换解耦方式进行分析,选择一个合理的方法代入相关性表达式,根据相关系数值完成故障区域判定。最后利用PSCAD/EMTDC搭建双馈风电场并网模型,设置各种不同的故障类型和场景,并利用Matlab进行保护算法验证,检验故障区域判断结果,验证所提保护方法的正确性与合理性,并且仿真结果表明该方法具有较高的可靠性。
Abstract
When the wind farm is connected to the power grid, the traditional directional element is susceptible to the interference of the dynamic characteristics of the power electronic devices inside the wind farm when the short-circuit fault occurs, which leads to the frequency characteristic deviation, system parameter instability and weak feedability, so that the relay protection device cannot judge the fault area timely or correctly. In order to solve the above problems, the fault additional network containing wind farms is analyzed first, and the correlation between the electrical quantities of each measurement point at the pilot protection installation after the fault occurs is found, and the fault logic relationship is determined. Then, through the analysis of the common decoupling mode of phase-mode transformation, a reasonable method is selected to replace the correlation expression, and the fault region is determined according to the correlation coefficient value. Finally, PSCAD/EMTDC is used to build the doubly-fed wind farm grid-connected model and various fault types and scenarios are set. Matlab is used to verify to test the judgment results of the fault area to determine the correctness and rationality of the proposed method. Simulation results show that this method has high reliability.
关键词
风电场 /
双馈风电机组 /
继电保护 /
相关性 /
纵联保护 /
相模变换
Key words
wind farm /
DFIG /
relay protection /
correlation /
pilot protection /
phase-mode transformation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王一珺, 杜文娟, 王海风. 大规模风电汇集系统小干扰稳定性研究综述[J]. 电网技术, 2022, 46(5): 1934-1946.
WANG Y J, DU W J, WANG H F.Review on small signal stability analysis of large-scale wind power collection system[J]. Power system technology, 2022, 46(5): 1934-1946.
[2] 张祥宇, 朱正振, 王琛, 等. 风电高渗透虚拟同步电力系统的功角暂态稳定性分析[J]. 太阳能学报, 2021, 42(2): 136-143.
ZHANG X Y, ZHU Z Z, WANG C, et al.Transient stability analysis of power angle in virtual synchronous system with high wind penetration[J]. Acta energiae solaris sinica, 2021, 42(2): 136-143.
[3] ZHOU X A, LIU Y S, CHANG P, et al.Voltage stability analysis of a power system with wind power based on the thevenin equivalent analytical method[J]. Electronics, 2022, 11(11): 1758.
[4] 成和祥. 基于双馈风机短路特性的风电场集电线路继电保护整定方法研究[J]. 电力系统保护与控制, 2020, 48(16): 93-99.
CHENG H X.Discussion on setting scheme of collecting line relay protection in wind farm based on a DFIG short-circuit characteristic[J]. Power system protection and control, 2020, 48(16): 93-99.
[5] ABDEL RAHMAN MOHAMED A, SHARAF H M, IBRAHIM D K. Enhancing distance protection of long transmission lines compensated with TCSC and connected with wind power[J]. IEEE access, 2021, 9: 46717-46730.
[6] 于淼, 汤亚芳, 黄亦欣, 等. 双馈风机控制方式对继电保护影响的研究[J]. 电力系统保护与控制, 2020, 48(2): 180-187.
YU M, TANG Y F, HUANG Y X, et al.Research on the influence of control mode of DFIG on relay protection[J]. Power system protection and control, 2020, 48(2): 180-187.
[7] WANG Q P, BO Z Q, MA X W, et al.Integrated protection based on multi-frequency domain information for UHV half-wavelength AC transmission line[J]. Protection and control of modern power systems, 2016, 1(1): 1-7.
[8] WANG C Q, SONG G B, KANG X N, et al.Novel transmission-line pilot protection based on frequency-domain model recognition[J]. IEEE transactions on power delivery, 2015, 30(3): 1243-1250.
[9] 杨国生, 樊沛林, 王聪博, 等. 基于能量分布的新能源场站送出线路纵联保护[J]. 电网技术, 2023, 47(4): 1415-1424.
YANG G S, FAN P L, WANG C B, et al.Pilot protection based on energy distribution for transmission line connected to renewable power plants[J]. Power system technology, 2023, 47(4): 1415-1424.
[10] 王春又, 孙士云, 毛肖, 等. 适应于双馈风电场送出线的时域距离纵联方向保护[J]. 电力系统保护与控制, 2021, 49(13): 82-94.
WANG C Y, SUN S Y, MAO X, et al.Longitudinal direction protection of time domain distance applicable to the outgoing line of a double-fed wind farm[J]. Power system protection and control, 2021, 49(13): 82-94.
[11] FAN Z F, SONG G B, KANG X N, et al.Three-phase fault direction identification method for outgoing transmission line of DFIG-based wind farms[J]. Journal of modern power systems and clean energy, 2019, 7(5): 1155-1164.
[12] 鲁月华, 樊艳芳, 罗瑞. 适用于交直流混联系统的时域全量故障模型判别纵联保护方案[J]. 电力系统保护与控制, 2020, 48(19): 81-88.
LU Y H, FAN Y F, LUO R.Principle of active distribution network pilot protection based on time domain model identification[J]. Power system protection and control, 2020, 48(19): 81-88.
[13] 侯俊杰, 樊艳芳. 基于分布参数模型的风电系统长距离送出线时域距离保护[J]. 电力系统保护与控制, 2018, 46(19): 26-33.
HOU J J, FAN Y F.Time domain distance protection for long distance outgoing line of wind power system based on distributed parameter model[J]. Power system protection and control, 2018, 46(19): 26-33.
[14] YANG Q F, MA H Z, LIU Y Q, et al.Novel pilot protection based on time-domain for transmission line with doubly fed induction generator[J]. International transactions on electrical energy systems, 2020, 30(10): 225435329.
[15] CHEN S, TAI N L, FAN C J, et al.Adaptive distance protection for grounded fault of lines connected with doubly-fed induction generators[J]. IET generation, transmission & distribution, 2017, 11(6): 1513-1520.
[16] 陈玉, 文明浩, 胡列翔, 等. 双馈风机风电场联络线出口故障方向判别[J]. 电力系统及其自动化学报, 2020, 32(2): 1-6.
CHEN Y, WEN M H, HU L X, et al.Fault direction identification for outgoing line of DFIG-based wind farm[J]. Proceedings of the CSU-EPSA, 2020, 32(2): 1-6.
[17] 宋国兵, 王晨清, 唐吉斯, 等. 适用于风电接入系统的时域模型识别纵联保护新原理[J]. 电网技术, 2016, 40(11): 3580-3585.
SONG G B, WANG C Q, TANG J S, et al.Novel pilot protection based on time-domain model identification for wind power integration[J]. Power system technology, 2016, 40(11): 3580-3585.
[18] 徐艳春, 范钟耀, 孙思涵, 等. 基于边缘检测的大规模风电场送出线路纵联保护算法[J]. 电力自动化设备, 2023, 43(1): 90-99.
XU Y C, FAN Z Y, SUN S H, et al.Pilot protection algorithm of large-scale wind farm outgoing transmission line based on edge detection[J]. Electric power automation equipment, 2023, 43(1): 90-99.
[19] SONG G B, WANG C Q, WANG T, et al.A phase selection method for wind power integration system using phase voltage waveform correlation[J]. IEEE transactions on power delivery, 2017, 32(2): 740-748.
[20] 姜丰, 朱家玲, 胡开永, 等. Pearson相关系数评价ORC系统蒸发器特性的应用研究[J]. 太阳能学报, 2019, 40(10): 2732-2738.
JIANG F, ZHU J L, HU K Y, et al.Applied research to assess envaporator performances in ORC system by Pearson correlation coefficient[J]. Acta energiae solaris sinica, 2019, 40(10): 2732-2738.
基金
国家自然科学基金面上项目(51777166); 国家自然科学基金国际合作与交流项目(52061635105); 国家电网有限公司总部科技项目 (52094020006U)