基于VMD-BOA-LSSVM-AdaBoost的短期风电功率预测

史彭珍, 魏霞, 张春梅, 谢丽蓉, 叶家豪, 杨家梁

太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 226-233.

PDF(2277 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2277 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 226-233. DOI: 10.19912/j.0254-0096.tynxb.2022-1485

基于VMD-BOA-LSSVM-AdaBoost的短期风电功率预测

  • 史彭珍1, 魏霞1, 张春梅2, 谢丽蓉1, 叶家豪1, 杨家梁1
作者信息 +

SHORT-TERM WIND POWER PREDICTION BASED ON VMD-BOA-LSSVM-AdaBoost

  • Shi Pengzhen1, Wei Xia1, Zhang Chunmei2, Xie Lirong1, Ye Jiahao1, Yang Jialiang1
Author information +
文章历史 +

摘要

针对风电信号具有间歇性、非线性、波动性、非平稳性和不确定性等特征,建立一种基于变分模态分解(VMD)和蝴蝶优化算法(BOA)优化最小二乘支持向量机(LSSVM)的风电功率短期预测模型,为提高预测精度,引入自适应校正算法(AdaBoost)。首先,利用变分模态分解将原始功率信号数据分解多个子序列。其次,利用蝴蝶优化算法优化最小二乘支持向量机组合预测模型对每个子序列进行预测。最后通过自适应校正算法将多个分量预测值重构得到最终的预测值,结合西北某一风电场提供的风电功率数据为例验证模型的有效性。结果验证了建立的组合预测模型能够较好地对短期风电功率进行预测,并具有较好的预测精度。

Abstract

Aiming at the intermittent, nonlinear, fluctuating, non-stationary and uncertain characteristics of wind power signals, the short-term forecasting method for wind power is established, which is based on Variational mode decomposition(VMD) and butterfly optimization algorithm(BOA)to optimize least squares support vector machine(LSSVM) and introducing adaptive correction to improve accuracy. Firstly, the raw power signal data is splitted into multiple subsequences by using VMD. Secondly, BOA is used to optimize combined prediction model of LSSVM to predict each subsequence. Finally, the prediction value of multiple components is reconstructed through AdaBoost to obtain the final prediction value. Combined with the wind power data provided by a wind farm in Northwest China as an example, the effectiveness of the model is verified. The results show that the combined forecasting model established above can predict the short-term wind power well and has a good forecasting accuracy.

关键词

风电功率预测 / 最小二乘支持向量机 / 变分模态分解 / 自适应校正 / 预测精度

Key words

wind power prediction / LSSVM / VMD / AdaBoost / prediction accuracy

引用本文

导出引用
史彭珍, 魏霞, 张春梅, 谢丽蓉, 叶家豪, 杨家梁. 基于VMD-BOA-LSSVM-AdaBoost的短期风电功率预测[J]. 太阳能学报. 2024, 45(1): 226-233 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1485
Shi Pengzhen, Wei Xia, Zhang Chunmei, Xie Lirong, Ye Jiahao, Yang Jialiang. SHORT-TERM WIND POWER PREDICTION BASED ON VMD-BOA-LSSVM-AdaBoost[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 226-233 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1485
中图分类号: TM614    TP181   

参考文献

[1] 孙荣富, 张涛, 和青, 等. 风电功率预测关键技术及应用综述[J]. 高电压技术, 2021, 47(4): 1129-1143.
SUN R F, ZHANG T, HE Q, et al.Review on key technologies and applications in wind power forecasting[J]. High voltage engineering, 2021, 47(4): 1129-1143.
[2] 仲悟之, 李崇钢, 崔杨, 等. 考虑历史相似性加权的超短期风电功率组合预测[J]. 太阳能学报, 2022, 43(6): 160-168.
ZHONG W Z, LI C G, CUI Y, et al.Combined prediction of ultra-short term wind power considering weighted historical similarity[J]. Acta energiae solaris sinica, 2022, 43(6): 160-168.
[3] 王涛, 高靖, 王优胤, 等. 基于改进经验模态分解和支持向量机的风电功率预测研究[J]. 电测与仪表, 2021, 58(6): 49-54.
WANG T, GAO J, WANG Y Y, et al.Wind power prediction based on improved empirical mode decomposition and support vector machine[J]. Electrical measurement & instrumentation, 2021, 58(6): 49-54.
[4] WEI L M, XV S, LI B.Short-term wind power prediction using an improved grey wolf optimization algorithm with back-propagation neural network[J]. Clean energy, 2022, 6(2): 288-296.
[5] 李大中, 李颖宇. 基于深度学习与误差修正的超短期风电功率预测[J]. 太阳能学报, 2021, 42(12): 200-205.
LI D Z, LI Y Y.Ultra-short term wind power prediction based on deep learning and error correction[J]. Acta energiae solaris sinica, 2021, 42(12): 200-205.
[6] PENG X S, CHENG K, WANG B, et al.Short-term wind power prediction based on wavelet transform and convolutional neural networks[C]//2020 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). Weihai, China, 2020: 1244-1250.
[7] 王梦阳, 王华庆, 董方, 等. 基于EVMD-LNMF的复合故障信号分离方法[J]. 振动与冲击, 2019, 38(16): 146-152.
WANG M Y, WANG H Q, DONG F, et al.A method of compound fault signal separation based on EVMD-LNMF[J]. Journal of vibration and shock, 2019, 38(16): 146-152.
[8] 赵铁成, 谢丽蓉, 叶家豪. 基于误差修正的NNA-ILSTM短期风电功率预测[J]. 智慧电力, 2022, 50(1): 29-36.
ZHAO T C, XIE L R, YE J H.NNA-ILSTM short term wind power prediction based on error correction[J]. Smart power, 2022, 50(1): 29-36.
[9] 赵凌云, 刘友波, 沈晓东, 等. 基于CEEMDAN和改进时间卷积网络的短期风电功率预测模型[J]. 电力系统保护与控制, 2022, 50(1): 42-50.
ZHAO L Y, LIU Y B, SHEN X D, et al.Short-term wind power prediction model based on CEEMDAN and an improved time convolutional network[J]. Power system protection and control, 2022, 50(1): 42-50.
[10] 刘栋, 魏霞, 王维庆, 等. 基于SSA-ELM的短期风电功率预测[J]. 智慧电力, 2021, 49(6): 53-59, 123.
LIU D, WEI X, WANG W Q, et al.Short-term wind power prediction based on SSA-ELM[J]. Smart power, 2021, 49(6): 53-59, 123.
[11] 叶家豪, 魏霞, 黄德启, 等. 基于灰色关联分析的BSO-ELM-AdaBoost风电功率短期预测[J]. 太阳能学报, 2022, 43(3): 426-432.
YE J H, WEI X, HUANG D Q, et al.Short-term forecast of wind power based on BSO-ELM-AdaBoost with grey correlation analysis[J]. Acta energiae solaris sinica, 2022, 43(3): 426-432.
[12] WANG W Y, SUN D C.The improved AdaBoost algorithms for imbalanced data classification[J]. Information sciences, 2021, 563: 358-374.
[13] DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J]. IEEE transactions on signal processing, 2014, 62(3): 531-544.
[14] 谢丽蓉, 王斌, 包洪印, 等. 基于EEMD-WOA-LSSVM的超短期风电功率预测[J]. 太阳能学报, 2021, 42(7): 290-296.
XIE L R, WANG B, BAO H Y, et al.Super-short-term wind power forecasting based on EEMD-WOA-LSSVM[J]. Acta energiae solaris sinica, 2021, 42(7): 290-296.
[15] ARORA S, SINGH S.Butterfly optimization algorithm: a novel approach for global optimization[J]. Soft computing, 2019, 23(3): 715-734.
[16] 王福忠, 王帅峰, 张丽. 基于VMD-LSTM与误差补偿的光伏发电超短期功率预测[J]. 太阳能学报, 2022, 43(8): 96-103.
WANG F Z, WANG S F, ZHANG L.Ultra short term power prediction of photovoltaic power generation based on VMD-LSTM and error compensation[J]. Acta energiae solaris sinica, 2022, 43(8): 96-103.
[17] 高金兰, 王天. 基于VMD-IWOA-LSSVM的短期负荷预测[J]. 吉林大学学报(信息科学版), 2021, 39(4): 430-438.
GAO J L, WANG T.Short-term load forecasting based on VMD-IWOA-LSSVM[J]. Journal of Jilin University (information science edition), 2021, 39(4): 430-438.
[18] FREUND Y, SCHAPIRE R E.A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of computer and system sciences, 1997, 5(1): 119-139.
[19] 周湶, 王时征, 廖瑞金, 等. 基于AdaBoost优化云理论的变压器故障诊断方法[J]. 高电压技术, 2015, 41(11): 3804-3811.
ZHOU Q, WANG S Z, LIAO R J, et al.Power transformer fault diagnosis method based on cloud model of Ada Boost algorithm[J]. High voltage engineering, 2015, 41(11): 3804-3811.
[20] 杨昭, 张钢, 赵俊杰, 等. 基于变分模态分解和改进粒子群算法优化最小二乘支持向量机的短期电价预测[J]. 电气技术, 2021, 22(10): 11-16.
YANG Z, ZHANG G, ZHAO J J, et al.Short term electricity price forecasting based on variational mode decomposition and improved particle swarm optimization-least square support vector machine[J]. Electrical engineering, 2021, 22(10): 11-16.

基金

国家自然科学基金(62163034)

PDF(2277 KB)

Accesses

Citation

Detail

段落导航
相关文章

/