考虑大气稳定度的风电场等效粗糙度模型研究

李宝良, 张子良, 葛铭纬, 王罗, 刘永前

太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 258-264.

PDF(1871 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1871 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 258-264. DOI: 10.19912/j.0254-0096.tynxb.2022-1494

考虑大气稳定度的风电场等效粗糙度模型研究

  • 李宝良1, 张子良2, 葛铭纬1, 王罗2, 刘永前1
作者信息 +

STUDY ON EFFECTIVE ROUGHNESS MODEL FOR WIND FARMS CONSIDERING ATMOSPHERIC STABILITY

  • Li Baoliang1, Zhang Ziliang2, Ge Mingwei1, Wang Luo2, Liu Yongqian1
Author information +
文章历史 +

摘要

目前模型未充分考虑大气稳定度的影响,针对该问题,在不同大气稳定度下,通过建立风电场边界层的动量平衡关系和揭示风电场的流动不均匀性,提出一种适用于不同大气稳定度的风电场等效粗糙度模型。采用大涡模拟方法对所提模型进行验证,结果显示该方法能有效评估大气稳定度对风电场流动不均匀性以及等效粗糙度的影响,所得等效粗糙度平均误差约10%。

Abstract

Current wind farm effective roughness models do not fully consider the influence of atmospheric stabilities. To address this problem, an effective roughness model for wind farms with different atmospheric stabilities is proposed by establishing the momentum balance relationship in the wind farm boundary layer and revealing the flow inhomogeneity of wind farms under different atmospheric stabilities. The proposed model is validated by using the large eddy simulation method, and the results show that the proposed model can effectively evaluate the effect of atmospheric stabilities on the flow inhomogeneity and the wind farm effective roughness, and the average error of the obtained effective roughness is about 10%.

关键词

风电场 / 大气边界层 / 尾流 / 大涡数值模拟 / 等效粗糙度模型

Key words

wind farm / atmospheric boundary layer / wakes / large eddy simulation / effective roughness model

引用本文

导出引用
李宝良, 张子良, 葛铭纬, 王罗, 刘永前. 考虑大气稳定度的风电场等效粗糙度模型研究[J]. 太阳能学报. 2024, 45(1): 258-264 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1494
Li Baoliang, Zhang Ziliang, Ge Mingwei, Wang Luo, Liu Yongqian. STUDY ON EFFECTIVE ROUGHNESS MODEL FOR WIND FARMS CONSIDERING ATMOSPHERIC STABILITY[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 258-264 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1494
中图分类号: TM614   

参考文献

[1] CALAF M, MENEVEAU C, MEYERS J.Large eddy simulation study of fully developed wind-turbine array boundary layers[J]. Physics of fluids, 2010, 22(1): 015110.
[2] CALAF M, PARLANGE M B, MENEVEAU C.Large eddy simulation study of scalar transport in fully developed wind-turbine array boundary layers[J]. Physics of fluids, 2011, 23(12): 126603.
[3] LETTAU H.Note on aerodynamic roughness-parameter estimation on the basis of roughness-element description[J]. Journal of applied meteorology, 1969, 8(5): 828-832.
[4] BARRIE D B, KIRK-DAVIDOFF D B. Weather response to management of a large wind turbine array[J]. Atmospheric chemistry and physics discussions, 2009, 9(1): 2917-2931.
[5] FRANDSEN S.On the wind speed reduction in the center of large clusters of wind turbines[J]. Journal of wind engineering and industrial aerodynamics, 1992, 39(1/2/3): 251-265.
[6] STEVENS R J A M, GAYME D F, MENEVEAU C. Coupled wake boundary layer model of wind-farms[J]. Journal of renewable and sustainable energy, 2015, 7(2): 023115.
[7] ZHANG H, GE M W, LIU Y Q, et al.A new coupled model for the equivalent roughness heights of wind farms[J]. Renewable energy, 2021, 171: 34-46.
[8] YANG X L, KANG S, SOTIROPOULOS F.Computational study and modeling of turbine spacing effects infinite aligned wind farms[J]. Physics of fluids, 2012, 24(11): 115107.
[9] ABKAR M, SHARIFI A, PORTÉ-AGEL F.Wake flow in a wind farm during a diurnal cycle[J]. Journal of turbulence, 2016, 17(4): 420-441.
[10] PEÑA A, HAHMANN A N. Atmospheric stability and turbulence fluxes at Horns Rev—an intercomparison of sonic, bulk and WRF model data[J]. Wind energy, 2012, 15(5): 717-731.
[11] TROEN I, LUNDTANG PETERSEN E.European wind atlas[M]. Roskilde: Risø National Laboratory, 1989.
[12] PEÑA A, RATHMANN O. Atmospheric stability-dependent infinite wind-farm models and the wake-decay coefficient[J]. Wind energy, 2014, 17(8): 1269-1285.
[13] EMEIS S, FRANDSEN S.Reduction of horizontal wind speed in a boundary layer with obstacles[J]. Boundary-layer meteorology, 1993, 64(3): 297-305.
[14] SESCU A, MENEVEAU C.Large-eddy simulation and single-column modeling of thermally stratified wind turbine arrays for fully developed, stationary atmospheric conditions[J]. Journal of atmospheric and oceanic technology, 2015, 32(6): 1144-1162.
[15] BRUTSAERT W.Hydrology: an introduction[M]. Cambridge: Cambridge Univeristy Press, 2005.
[16] 刘永前, 马晓梅, 高小力, 等. 基于中性等效风速的海上风廓线建模方法研究[J]. 华北电力大学学报(自然科学版), 2021, 48(6): 97-105.
LIU Y Q, MA X M, GAO X L, et al.Study on wind profile modeling of offshore based on neutral equivalent wind speed[J]. Journal of North China Electric Power University(natural science edition), 2021, 48(6): 97-105.
[17] FRANDSEN S, BARTHELMIE R, PRYOR S, et al.Analytical modelling of wind speed deficit in large offshore wind farms[J]. Wind energy, 2006, 9(1-2): 39-53.
[18] BOU-ZEID E, MENEVEAU C, PARLANGE M.A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows[J]. Physics of fluids, 2005, 17(2): 025105.
[19] DU B W, GE M W, ZENG C J, et al.Influence of atmospheric stability on wind-turbine wakes with a certain hub-height turbulence intensity[J]. Physics of fluids, 2021, 33(5): 055111.
[20] SHAPIRO C R, GAYME D F, MENEVEAU C.Filtered actuator disks: theory and application to wind turbine models in large eddy simulation[J]. Wind energy, 2019, 22(10): 1414-1420.
[21] MOENG C H.A large-eddy-simulation model for the study of planetary boundary-layer turbulence[J]. Journal of the atmospheric sciences, 1984, 41(13): 2052-2062.
[22] MONIN A S, OBUKHOV A M. Basic laws of turbulent mixing in the surface layer of the atmosphere[EB/OL]. https://www.mcnaughty.com/keith/papers/Monin_and_ Obukhov_1954.pdf

基金

国家自然科学基金(12172128); 中国长江三峡集团有限公司科研项目(202103368)

PDF(1871 KB)

Accesses

Citation

Detail

段落导航
相关文章

/