模型差异性混合储能系统建模及功率分配

桑丙玉, 杨波, 李克成, 陶以彬

太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 433-441.

PDF(2165 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2165 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 433-441. DOI: 10.19912/j.0254-0096.tynxb.2022-1495

模型差异性混合储能系统建模及功率分配

  • 桑丙玉, 杨波, 李克成, 陶以彬
作者信息 +

MODEL DIFFERENCE HYBRID ENERGY STORAGE SYSTEM MODELING AND POWER DISTRIBUTION STRATEGY

  • Sang Bingyu, Yang Bo, Li Kecheng, Tao Yibin
Author information +
文章历史 +

摘要

该文从锂电池和燃料电池的混合储能特性出发, 针对已有文献的拓扑结构, 对比选取适用于功率分配的混合储能拓扑模型和建模方法, 并在组合过程中通过分析选取最合适的变换方式组成混合储能模型, 最后通过仿真验证所提模型可在进行功率分配的前提下提高储能系统荷电状态偏移, 延长储能系统寿命。

Abstract

Starting from the hybrid energy storage characteristics of lithium batteries and fuel cells, this paper compares and selects hybrid energy storage topology models and modeling methods suitable for power distribution according to the topology structures of existing literature, and selects the most suitable hybrid energy storage topology model through analysis and selection during the combination process. A hybrid energy storage model is formed by appropriate transformation methods. Finally, it is verified by simulation that the proposed model can improve the state of charge offset of the energy storage system and prolong the life of the energy storage system under the premise of power distribution.

关键词

储能系统 / 锂电池 / 质子交换膜燃料电池 / 电池建模 / 功率分配

Key words

energy storage / lithium batteries / proton exchange membrane fuel cells / battery modelling / electric power distribution

引用本文

导出引用
桑丙玉, 杨波, 李克成, 陶以彬. 模型差异性混合储能系统建模及功率分配[J]. 太阳能学报. 2024, 45(1): 433-441 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1495
Sang Bingyu, Yang Bo, Li Kecheng, Tao Yibin. MODEL DIFFERENCE HYBRID ENERGY STORAGE SYSTEM MODELING AND POWER DISTRIBUTION STRATEGY[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 433-441 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1495
中图分类号: TM62   

参考文献

[1] 李建林, 李雅欣, 吕超, 等. 退役动力电池梯次利用关键技术及现状分析[J]. 电力系统自动化, 2020, 44(13): 172-183.
LI J L, LI Y X, LYU C, et al.Key technology and research status of cascaded utilization in decommissioned power battery[J]. Automation of electric power systems, 2020, 44(13): 172-183.
[2] ESFAHANIAN V, SHAHBAZI A A, TORABI F.A real-time battery engine simulation tool (BEST) based on lumped model and reduced-order modes: application to lead-acid battery[J]. Journal of energy storage, 2019, 24: 100780.
[3] 孙朝晖, 成晓潇, 陈冬冬, 等. 计及非线性容量效应的锂离子电池混合等效电路模型[J]. 电工技术学报, 2016, 31(15): 156-162.
SUN Z H, CHENG X X, CHEN D D, et al.Hybrid equivalent circuit model of lithium ion battery considering nonlinear capacity effects[J]. Transactions of China Electrotechnical Society, 2016, 31(15): 156-162.
[4] BADAL F R, DAS P, SARKER S K, et al.A survey on control issues in renewable energy integration and microgrid[J]. Protection and control of modern power systems, 2019, 4(1): 1-27.
[5] CHO S, JEONG H, HAN C H, et al.State-of-charge estimation for lithium-ion batteries under various operating conditions using an equivalent circuit model[J]. Computers & chemical engineering, 2012, 41: 1-9.
[6] 蔡信, 李波, 汪宏华, 等. 基于神经网络模型的动力电池SOC估计研究[J]. 机电工程, 2015, 32(1): 128-132.
CAI X, LI B, WANG H H, et al.Estimation of state-of-charge for electric vehicle power battery with neural network method[J]. Journal of mechanical & electrical engineering, 2015, 32(1): 128-132.
[7] 马群. 基于中心差分卡尔曼滤波的动力电池SOC估算研究[D]. 长春: 吉林大学, 2014.
MA Q.Research on estimation of SOC based on central difference Kalman filter algorithm for power battery[D]. Changchun: Jilin University, 2014.
[8] 谭晓军. 电动汽车动力电池管理系统设计[M]. 广州: 中山大学出版社, 2011.
TAN X J.Design of power battery management system for electric vehicle[M]. Guangzhou: Sun Yat-sen University Press, 2011.
[9] 朱方方, 王康丽, 蒋凯. 基于Simulink的锂离子电池建模与仿真研究[J]. 电源技术, 2019, 43(3): 434-436, 489.
ZHU F F, WANG K L, JIANG K.Modeling and simulation of lithium-ion batteries based on Simulink[J]. Chinese journal of power sources, 2019, 43(3): 434-436, 489.
[10] 李逢兵, 谢开贵, 张雪松, 等. 基于锂电池充放电状态的混合储能系统控制策略设计[J]. 电力系统自动化, 2013, 37(1): 70-75.
LI F B, XIE K G, ZHANG X S, et al.Control strategy design for hybrid energy storage system based on charge/discharge status of lithium-ion battery[J]. Automation of electric power systems, 2013, 37(1): 70-75.
[11] 杨帆, 任永峰, 云平平, 等. 双级锂电池-超级电容混合储能的协调控制及功率分配[J]. 可再生能源, 2019, 37(3): 361-366.
YANG F, REN Y F, YUN P P, et al.Coordinated control and power distribution of double stage lithium battery-super capacitor hybrid energy storage system[J]. Renewable energy resources, 2019, 37(3): 361-366.
[12] 雷勇, 林晓冬. 超导磁储能-蓄电池混合储能系统在平抑风电场功率波动中的应用[J]. 高电压技术, 2019, 45(3): 983-992.
LEI Y, LIN X D.Application of hybrid energy storage system based on SMES and BESS in smoothing the power fluctuations of wind farms[J]. High voltage engineering, 2019, 45(3): 983-992.
[13] 周娟, 化毅恒, 刘凯, 等. 一种高精度锂离子电池建模方案研究[J]. 中国电机工程学报, 2019, 39(21): 6394-6403.
ZHOU J, HUA Y H, LIU K, et al.Research on a high-precision modeling scheme for lithium-ion battery[J]. Proceedings of the CSEE, 2019, 39(21): 6394-6403.
[14] 肖亚宁. 电化学电池储能系统统一等效建模及其应用[D]. 长沙: 湖南大学, 2016.
XIAO Y N.Unified equivalent modeling of electrochemical battery energy storage system and its application[D]. Changsha: Hunan University, 2016.
[15] 熊会元, 洪佳鹏, 王攀, 等. 基于正态分布的锂电池组建模仿真[J]. 电源技术, 2019, 43(10): 1626-1629.
XIONG H Y, HONG J P, WANG P, et al.Modeling and simulation of lithium battery pack based on normal distribution[J]. Chinese journal of power sources, 2019, 43(10): 1626-1629.
[16] 化毅恒. 电动汽车三元锂离子电池建模与SOC估算研究[D]. 徐州: 中国矿业大学, 2019.
HUA Y H.Modeling and SOC estimation of ternary lithium-ion batteries for electric vehicles[D]. Xuzhou: China University of Mining and Technology, 2019.
[17] 杨玺, 刘士诚, 周炜钦, 等. 锂离子电池建模技术研究[J]. 分布式能源, 2021, 6(4): 77-82.
YANG X, LIU S C, ZHOU W Q, et al.Research on lithium-ion battery modeling technology[J]. Distributed energy, 2021, 6(4): 77-82.
[18] 黄伟男, 宋永丰, 张维戈, 等. 基于温度修正的锂离子电池协同热仿真构架[J]. 中国电机工程学报, 2020, 40(12): 4013-4024.
HUANG W N, SONG Y F, ZHANG W G, et al.A thermal co-simulation framework based on temperature correction for lithium-ion battery[J]. Proceedings of the CSEE, 2020, 40(12): 4013-4024.
[19] 顾洮, 袁野. 质子交换膜燃料电池仿真建模与分析[J]. 电源技术, 2021, 45(4): 459-462.
GU T, YUAN Y.Simulation modeling and analysis of proton exchange membrane fuel cell[J]. Chinese journal of power sources, 2021, 45(4): 459-462.
[20] 廖晋杨. 车用质子交换膜燃料电池建模与仿真研究[D]. 南宁: 广西大学, 2019.
LIAO J Y.Research on modeling and simulation of PEMFC for vehicle[D]. Nanning: Guangxi University, 2019.
[21] 刘树良. 质子交换膜燃料电池建模仿真与特性研究[D]. 武汉: 武汉理工大学, 2013.
LIU S L.Research on modeling simulation and characteristic of proton exchange membrane fuel cell[D]. Wuhan: Wuhan University of Technology, 2013.
[22] 郭伟, 赵洪山. 基于DMPC加权一致性算法的电池储能阵列分组控制策略[J]. 电力自动化设备, 2020, 40(1): 133-140.
GUO W, ZHAO H S.Grouping control strategy of battery energy storage array based on DMPC weighted consensus algorithm[J]. Electric power automation equipment, 2020, 40(1): 133-140.
[23] 张彩萍, 姜久春, 张维戈, 等. 梯次利用锂离子电池电化学阻抗模型及特性参数分析[J]. 电力系统自动化, 2013, 37(1): 54-58.
ZHANG C P, JIANG J C, ZHANG W G, et al.Characterization of electrochemical impedance equivalent model and parameters for Li-ion batteries echelon use[J]. Automation of electric power systems, 2013, 37(1): 54-58.
[24] 李相俊, 王上行, 惠东. 电池储能系统运行控制与应用方法综述及展望[J]. 电网技术, 2017, 41(10): 3315-3325.
LI X J, WANG S X, HUI D.Summary and prospect of operation control and application method for battery energy storage systems[J]. Power system technology, 2017, 41(10): 3315-3325.
[25] 刘冰. 基于温度和循环寿命的锂离子电池SOC估算算法研究[D]. 南京: 南京航空航天大学, 2020.
LIU B.Study on state-of-charge estimation algorithms for lithium-ion battery based on temperature and cycle life[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020.
[26] 李建林, 李雅欣, 吕超, 等. 碳中和目标下退役电池筛选聚类关键技术研究[J]. 电网技术, 2022, 46(2): 429-441.
LI J L, LI Y X, LYU C, et al.Key technology of retired batteries' screening and clustering under target of carbon neutrality[J]. Power system technology, 2022, 46(2): 429-441.
[27] 黄越辉, 曲凯, 李驰, 等. 基于K-means MCMC算法的中长期风电时间序列建模方法研究[J]. 电网技术, 2019, 43(7): 2469-2476.
HUANG Y H, QU K, LI C, et al.Research on modeling method of medium-and long-term wind power time series based on K-means MCMC algorithm[J]. Power system technology, 2019, 43(7): 2469-2476.
[28] 王新霞, 王党树. 等效电路法动力锂离子电池组系统建模与仿真[J]. 实验室研究与探索, 2018, 37(7): 92-96.
WANG X X, WANG D S.Research on model and simulation of the power lithium-ion battery system based on the equivalent circuit method[J]. Research and exploration in laboratory, 2018, 37(7): 92-96.
[29] 施云辉, 王橹裕, 陈玮, 等. 基于风电预测误差聚类的分布鲁棒含储能机组组合[J]. 电力系统自动化, 2019, 43(22): 3-12, 121.
SHI Y H, WANG L Y, CHEN W, et al.Distributed robust unit commitment with energy storage based on forecasting error clustering of wind power[J]. Automation of electric power systems, 2019, 43(22): 3-12, 121.
[30] 李建林, 王上行, 袁晓冬, 等. 江苏电网侧电池储能电站建设运行的启示[J]. 电力系统自动化, 2018, 42(21): 1-9, 103.
LI J L, WANG S X, YUAN X D, et al.Enlightenment from construction and operation of battery energy storage station on grid side in Jiangsu power grid[J]. Automation of electric power systems, 2018, 42(21): 1-9, 103.
[31] LIU J, WEN J Y, YAO W, et al.Solution to short-term frequency response of wind farms by using energy storage systems[J]. IET renewable power generation, 2016, 10(5): 669-678.
[32] PULENDRAN S, TATE J E.Energy storage system control for prevention of transient under-frequency load shedding[J]. IEEE transactions on smart grid, 2017, 8(2): 927-936.
[33] KNAP V, CHAUDHARY S K, STROE D I, et al.Sizing of an energy storage system for grid inertial response and primary frequency reserve[J]. IEEE transactions on power systems, 2016, 31(5): 3447-3456.
[34] 孟祥飞, 庞秀岚, 崇锋, 等. 电化学储能在电网中的应用分析及展望[J]. 储能科学与技术, 2019, 8(S1): 38-42.
MENG X F, PANG X L, CHONG F, et al.Application analysis and prospect of electrochemical energy storage in power grid[J]. Energy storage science and technology, 2019, 8(S1): 38-42.
[35] 宋安琪, 武利会, 刘成, 等. 分布式储能发展的国际政策与市场规则分析[J]. 储能科学与技术, 2020, 9(1): 306-316.
SONG A Q, WU L H, LIU C, et al.Analysis of global distributed energy storage development policies and market rules[J]. Energy storage science and technology, 2020, 9(1): 306-316.
[36] 李先锋, 张洪章, 郑琼, 等. 能源革命中的电化学储能技术[J]. 中国科学院院刊, 2019, 34(4): 443-449.
LI X F, ZHANG H Z, ZHENG Q, et al.Electrochemical energy storage technology in energy revolution[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 443-449.
[37] 陈浩, 贾燕冰, 郑晋, 等. 规模化储能调频辅助服务市场机制及调度策略研究[J]. 电网技术, 2019, 43(10): 3606-3617.
CHEN H, JIA Y B, ZHENG J, et al.Research on market mechanism and scheduling strategy of frequency regulation auxiliary service of large-scale energy storage[J]. Power system technology, 2019, 43(10): 3606-3617.

基金

2022年度江苏省储能变流及应用工程技术研究中心开放基金项目(NY80-22-002)

PDF(2165 KB)

Accesses

Citation

Detail

段落导航
相关文章

/