针对孤岛直流微电网中分布式混合储能系统(HESS)协调运行问题,提出一种基于有限控制集模型预测控制(FCS-MPC)的功率协调控制策略。该策略采用小波包变换来分解分布式HESS的功率需求,由于分解后信号的特点和分布式HESS中蓄电池初始状态的不同,于是对分解后最低频信号基于蓄电池荷电状态(SOC)设计自适应因数来进一步再分解。由于DC/DC变换器开关状态组合数量较少,使得多步FCS-MPC的滚动优化计算量较少,于是采用FCS-MPC取代双闭环PI控制,提高系统动态响应。搭建含有分布式HESS的孤岛直流微电网模型,并做了3种方案的仿真对比,验证该策略有效平缓了直流母线波动并实现蓄电池SOC一致。该策略有利于提高电网运行的稳定性,并延长蓄电池使用寿命。
Abstract
Aiming at the problem of coordinating operation of distributed hybrid energy storage system (HESS) in the isolated DC microgrid, a power coordinating control strategy based on finite control set-model predictive control (FCS-MPC) is proposeed. This strategy uses wavelet packet transform to decompose the power demand of distributed HESS, and due to the characteristics of the decomposed signal and the difference in the initial state of the battery in distributed HESS, so the adaptive factor pair is designed based on the state of charge (SOC) of the battery to further decompose the lowest frequency signal after decomposition. Due to the small number of switching state combinations of DC/DC converters, the rolling optimization calculation of multi-step FCS-MPC is less, so FCS-MPC is used to replace the dual closed-loop PI control to improve the dynamic response of the system. In this paper, an islanded DC microgrid model containing distributed HESS is constructed, and the simulation comparison of the three schemes is made, which verifies that the strategy effectively smooths the DC bus fluctuation and realizes the consistency of battery SOC. This strategy is conducive to improving the stability of grid operation and extending the service life of the battery.
关键词
有限控制集模型预测控制 /
分布式混合储能系统 /
功率分配 /
小波包变换 /
SOC一致
Key words
finite control set-model predictive control /
distributed hybrid energy storage system /
electric power distribution /
wavelet packet transform /
SOC consistency
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 钱一晨, 金晶. 可再生能源混合系统电源优化配置综述[J]. 太阳能学报, 2012, 33(增刊1): 98-102.
QIAN Y C, JIN J.Summary of optimal allocation of renewable energy hybrid system power[J]. Acta energiae solaris sinica, 2012, 33(S1): 98-102.
[2] XU D Z, ZHANG W M, JIANG B, et al.Directed-graph-observer-based model-free cooperative sliding mode control for distributed energy storage systems in DC microgrid[J]. IEEE transactions on industrial informatics, 2020, 16(2): 1224-1235.
[3] HOANG K D, LEE H H.Accurate power sharing with balanced battery state of charge in distributed DC microgrid[J]. IEEE transactions on industrial electronics, 2019, 66(3): 1883-1893.
[4] 闫群民, 穆佳豪, 马永翔, 等. 分布式储能应用模式及优化配置综述[J]. 电力工程技术, 2022, 41(2): 67-74.
YAN Q M, MU J H, MA Y X, et al.Review of distributed energy storage application mode and optimal configuration[J]. Electric power engineering technology, 2022, 41(2): 67-74.
[5] LIU J Z, ZHANG W, RIZZONI G.Robust stability analysis of DC microgrids with constant power loads[C]//2017 American Control Conference (ACC). Seattle, WA, USA, 2017: 748-753.
[6] 丁明, 吴杰, 张晶晶. 面向风电平抑的混合储能系统容量配置方法[J]. 太阳能学报, 2019, 40(3): 593-599.
DING M, WU J, ZHANG J J.Capacity optimization method of hybrid energy storage system for wind power smoothing[J]. Acta energiae solaris sinica, 2019, 40(3): 593-599.
[7] GOLSORKHI M S, SHAFIEE Q, LU D D C, et al. A distributed control framework for integrated photovoltaic-battery-based islanded microgrids[J]. IEEE transactions on smart grid, 2017, 8(6): 2837-2848.
[8] 李霞林, 郭力, 王成山, 等. 直流微电网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(1): 2-17.
LI X L, GUO L, WANG C S, et al.Key technologies of DC microgrids: an overview[J]. Proceedings of the CSEE, 2016, 36(1): 2-17.
[9] 傅质馨, 李乔木, 袁越, 等. 分布式光伏发电系统监控网络节点休眠调度机制研究[J]. 太阳能学报, 2016, 37(4): 853-860.
FU Z X, LI Q M, YUAN Y, et al.Research of sleep scheduling mechanism of monitoring network nodes of distributed PV systems[J]. Acta energiae solaris sinica, 2016, 37(4): 853-860.
[10] 李灏, 张彦, 付立军, 等. 舰船综合电力系统的多混合储能协同控制方法[J]. 中国舰船研究, 2020, 15(6): 12-21.
LI H, ZHANG Y, FU L J, et al.A coordinated control method of multi-hybrid energy storage in vessel integrated power system[J]. Chinese journal of ship research, 2020, 15(6): 12-21.
[11] 周建宇, 闫林芳, 刘巨, 等. 基于一致性理论的直流微电网混合储能协同控制策略[J]. 中国电机工程学报, 2018, 38(23): 6837-6846, 7118.
ZHOU J Y, YAN L F, LIU J, et al.A cooperative control strategy for DC microgrid based on consensus algorithm[J]. Proceedings of the CSEE, 2018, 38(23): 6837-6846, 7118.
[12] 郭伟, 赵洪山. 基于事件触发机制的直流微电网多混合储能系统分层协调控制方法[J]. 电工技术学报, 2020, 35(5): 1140-1151.
GUO W, ZHAO H S.Coordinated control method of multiple hybrid energy storage system in DC microgrid based on event-triggered mechanism[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 1140-1151.
[13] 韩晓娟, 梁宇博, 王梦圆, 等. 基于KF-MPC的光储系统双调节反馈优化控制方法[J]. 太阳能学报, 2021, 42(1): 56-62.
HAN X J, LIANG Y B, WANG M Y, et al.Dual-regulating feedback optimization control method of PV combined energy storage system based on KF-MPC[J]. Acta energiae solaris sinica, 2021, 42(1): 56-62.
[14] 杜祥伟, 沈艳霞, 李静. 基于模型预测控制的直流微网混合储能能量管理策略[J]. 电力系统保护与控制, 2020, 48(16): 69-75.
DU X W, SHEN Y X, LI J.Energy management strategy of DC microgrid hybrid energy storage based on model predictive control[J]. Power system protection and control, 2020, 48(16): 69-75.
[15] 郑子萱, 倪扶瑶, 汪颖, 等. 基于模型预测控制混合储能系统的直流微电网韧性提升策略[J]. 电力自动化设备, 2021, 41(5): 152-159.
ZHENG Z X, NI F Y, WANG Y, et al.Operation resilience enhancing strategy of DC microgrid based on model predictive controlled hybrid energy storage system[J]. Electric power automation equipment, 2021, 41(5): 152-159.
基金
国家自然科学基金(61973140; 61903158)