为实现同一区域内多个不同利益主体微网之间的电能互济,提出一种多代理技术下基于主从博弈的多微网系统经济优化调度方法。首先,设计一种由多微网代理(MMGA)制定系统内部电价,各微网代理(MGA)对电价作出响应的多微网系统能量交互框架;其次,引入可信性理论的模糊机会约束处理可再生能源以及负荷不确定性对调度决策的影响,基于主从博弈建立含模糊机会约束的多微网系统经济优化调度模型;最后,采用遗传算法嵌套CPLEX求解器进行求解。仿真结果表明:所提方法在提高各方经济效益的同时可减小多微网系统与电网的交互电量,有利于分布式资源的就地消纳和电网安全稳定的运行。
Abstract
In order to realize the mutual aid of electric energy among multiple microgrids with different stakeholders in the same region, and come up with an economic optimal scheduling method of multi-microgrid system based on master-slave game under multi-agent technology. Firstly, a multi-microgrid system energy interaction framework, in which the multi-microgrid agents (MMGA) set the internal electricity price of the system, and the microgrid agents (MGA) respond to the electricity price is designed. Secondly, the fuzzy chance constraint of credibility theory to deal with the impact of renewable energy and load uncertainty on dispatching decisions is introduced . Based on the master-slave game, the economic optimal dispatching model of multi-microgrid system with fuzzy chance constraint is established . Finally, the genetic algorithm nested CPLEX solver is used to deal with the problem. The simulation results show that the proposed method not only improves the economic benefits of all parties, but also reduces the interactive power between the multi-microgrid system and the power grid, which is conducive to the local consumption of distributed resources and the safe and stable operation of the power grid.
关键词
分布式发电 /
微电网 /
不确定性分析 /
主从博弈 /
多代理技术 /
优化调度
Key words
distributed power generation /
microgrids /
uncertainty analysis /
master-slave game /
multi-agent technology /
optimization dispatch
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] HUANG H Y, ZHOU M, ZHANG S Y, et al.Exploiting the operational flexibility of wind integrated hybrid AC/DC power systems[J]. IEEE transactions on power systems, 2021, 36(1): 818-826.
[2] 鲁宗相, 王彩霞, 闵勇, 等. 微电网研究综述[J]. 电力系统自动化, 2007, 31(19): 100-107.
LU Z X, WANG C X, MIN Y, et al.Overview on microgrid research[J]. Automation of electric power systems, 2007, 31(19): 100-107.
[3] ZHANG W, XU Y L.Distributed optimal control for multiple microgrids in a distribution network[J]. IEEE transactions on smart grid, 2019, 10(4):3765-3779.
[4] 李鹏, 吴迪凡, 李雨薇, 等. 基于谈判博弈的多微网综合能源系统多目标联合优化配置[J]. 电网技术, 2020, 44(10): 3680-3688.
LI P, WU D F, LI Y W, et al.Multi-objective union optimal configuration strategy for multi-microgrid integrated energy system considering bargaining games[J]. Power system technology, 2020, 44(10): 3680-3688.
[5] LIU N, WANG J, WANG L.Distributed energy management for interconnected operation of combined heat and power-based microgrids with demand response[J]. Journal of modern power systems & clean energy, 2017, 5(3): 1-11.
[6] 何浩, 雷霞, 黄涛, 等. 价格引导下多微网系统协调自治优化运行策略[J]. 电力系统保护与控制, 2019, 47(16): 17-26.
HE H, LEI X, HUANG T, et a1. Coordinated and autonomous optimal operation strategy of multi-microgrid system under the guidance of price[J]. Power system protection and control, 2019, 47(16): 17-26.
[7] 龚钢军, 张心语, 张哲宁, 等. 基于区块链动态合作博弈的多微网共治交易模式[J]. 中国电机工程学报, 2021, 41(3): 803-819.
GONG G J, ZHANG X Y, ZHANG Z N, et al.Multi-microgrid Co-governance transaction model based on dynamic cooperation game of blockchain[J]. Proceedings of the CSEE, 2021, 41(3): 803-819.
[8] 朱永胜, 杨俊林, 刘洲峰, 等. 基于博弈论的风-光-车容量配置研究[J]. 太阳能学报, 2020, 41(9): 95-103.
ZHU Y S, YANG J L, LIU Z F, et al.Research on capacity allocation of wind-PV-EV based on game theory[J]. Acta energiae solaris sinica, 2020, 41(9): 95-103.
[9] 佟新, 胡存刚, 芮涛. 基于主从博弈的多微电网系统经济优化方法[J]. 中国电力, 2019,52(6): 68-76.
TONG X, HU C G, RUI T.Master-slave game based on economic optimization method of multi-microgrid system[J]. Electric power, 2019, 52(6): 68-76.
[10] 杨秋霞, 高辰, 刘同心, 等. 考虑柔性负荷的含光伏电力系统模糊随机优化调度风险研究[J]. 太阳能学报, 2020, 41(7): 142-151.
YANG Q X, GAO C, LIU T X, et al.Risk analysis on fuzzy random optimal dispatching of photovoltaic power consumption considering flexible load[J]. Acta energiae solaris sinica, 2020, 41(7): 142-151.
[11] 仲悟之, 黄思宇, 崔杨, 等. 考虑源荷不确定性的风电-光热-碳捕集虚拟电厂协调优化调度[J]. 电网技术, 2020, 44(9): 3424-3432.
ZHONG W Z, HUANG S Y, CUI Y, et al.W-S-C capture coordination in virtual power plant considering source-load uncertainty[J]. Power system technology, 2020, 44(9): 3424-3432.
[12] 王海洋, 李珂, 张承慧, 等. 基于主从博弈的社区综合能源系统分布式协同优化运行策略[J]. 中国电机工程学报, 2020, 40(17): 5435-5444.
WANG H Y, LI K, ZHANG C H, et al.Distributed coordinative optimal operation of community integrated energy system based on Stackelberg game[J]. Proceedings of the CSEE, 2020, 40(17): 5435-5444.
[13] 胡铭洋, 高红均, 王程, 等. 面向多微网协调交易的多方共治决策方法[J]. 电力系统自动化, 2022, 46(13): 30-42.
HU M U, GAO H J, WANG C, et al.Multi-party co-governance decision-making method for coordinated transactions among multiple microgrids[J]. Automation electric power systems,2022, 46(13): 30-42.
基金
国家自然科学基金(52367012); 新疆维吾尔自治区重点研发专项资助项目(2022B01020-3)