基于随机森林算法的FY-4A地表入射太阳辐射空间订正

徐丽娜, 申彦波, 胡玥明, 邢旭煌

太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 109-115.

PDF(3307 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3307 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 109-115. DOI: 10.19912/j.0254-0096.tynxb.2022-1503

基于随机森林算法的FY-4A地表入射太阳辐射空间订正

  • 徐丽娜1,2, 申彦波3, 胡玥明2,3, 邢旭煌2
作者信息 +

SPATIAL CORRECTION OF FY-4A SURFACE SOLAR RADIATION BASED ON RANDOM FOREST ALGORITHM

  • Xu Li'na1,2,Shen Yanbo3,Hu Yueming2,3,Xing Xuhuang2
Author information +
文章历史 +

摘要

筛选时次、天顶角、FY-4A AGRI全圆盘地表入射太阳辐射(SSI)、云覆盖率(CFR)、云检测(CLM)以及云类型(CLT)产品构建特征向量,采用随机森林方法开展FY-4A SSI逐时产品的空间订正研究。结果表明、随机森林算法对于提升FY-4A SSI产品的空间分布精度具有明显作用,订正后相关系数、平均偏差、平均绝对误差均有不同程度的改善,且能很好地解决FY-4A SSI产品的过高估计及FY-4A SSI产品在太阳天顶角大于70°时无观测问题,有效提高FY-4A SSI产品在高纬度地区的可用性。

Abstract

FY-4A AGRI full disk surface solar radiation (SSI), cloud fraction ratio (CFR), cloud mask (CLM) and cloud type (CLT) products are used to construct feature vectors and the random forest algorithm is used to carry out the research on hourly spatial correction of FY-4A SSI products. The results show that the random forest algorithm has a significant role in improving the spatial distribution accuracy of FY-4A SSI products, the correlation coefficient, average deviation and average absolute error are improved to varying degrees.It can also solve the overestimation of FY-4A SSI products and the no observation problem when the solar zenith angle is greater than 70° of FY-4A SSI products, the availability of FY-4A SSI products in high latitudes is improved effectively.

关键词

太阳辐照度 / 卫星数据 / 反演 / 空间订正 / 随机森林

Key words

solar irradiance / satellite data / retrieval / spatial correction / random forest

引用本文

导出引用
徐丽娜, 申彦波, 胡玥明, 邢旭煌. 基于随机森林算法的FY-4A地表入射太阳辐射空间订正[J]. 太阳能学报. 2024, 45(1): 109-115 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1503
Xu Li'na,Shen Yanbo,Hu Yueming,Xing Xuhuang. SPATIAL CORRECTION OF FY-4A SURFACE SOLAR RADIATION BASED ON RANDOM FOREST ALGORITHM[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 109-115 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1503
中图分类号: P414.4   

参考文献

[1] 徐丽娜, 申彦波, 李忠, 等. FY-4A SSI产品在辐射观测稀疏位置的偏差订正方案[J]. 高原气象, 2022, 41(4): 1051-1061.
XU L N, SHEN Y B, LI Z, et al.Deviation correction scheme of FY-4A SSI product in the position of sparse radiation observations[J]. Plateau meteorology, 2022, 41(4): 1051-1061.
[2] 申彦波. 近20年卫星遥感资料在我国太阳能资源评估中的应用综述[J]. 气象, 2010, 36(9): 111-115.
SHEN Y B.Review of applications of satellite remote sensing data to solar energy resources assessment in China in recent 20 years[J]. Meteorological monthly, 2010, 36(9): 111-115.
[3] 陈鹏翔, 彭冬梅, 张旭. 基于FY-2G总云量的日照百分率估算及检验[J]. 气候变化研究快报, 2018, 7(5): 381-390.
CHEN P X, PENG D M, ZHANG X.Estimated and tested of sunshine percentage based on total cloud amount form FY-2G[J]. Climate change research letters, 2018, 7(5): 381-390.
[4] 牛晓俊, 冯文兰, 王永前, 等. 复杂地形下光合有效辐射的遥感估算研究[J]. 高原气象, 2017, 36(4): 1029-1038.
NIU X J, FENG W L, WANG Y Q, et al.Study on estimation of photosynthetically active radiation under complicated topography by remote sensing[J]. Plateau meteorology, 2017, 36(4): 1029-1038.
[5] 陈卓奇, 邵全琴, 刘纪远, 等. MODIS大气产品的光合有效辐射估算研究[J]. 遥感学报, 2012, 16(1): 25-37.
CHEN Z Q, SHAO Q Q, LIU J Y, et al.Estimating photosynthetic active radiation using MODIS atmosphere products[J]. National remote sensing bulletin, 2012, 16(1): 25-37.
[6] 黎微微, 胡斯勒图, 陈洪滨, 等. 利用MODIS资料计算不同云天条件下的地表太阳辐射[J]. 遥感技术与应用, 2017, 32(4): 643-650.
LI W W, HUSI L T, CHEN H B, et al.Estimation of surface solar radiation using MODIS satellite data and RSTAR model[J]. Remote sensing technology and application, 2017, 32(4): 643-650.
[7] 刘羽, 张显峰, 吕扬. 基于风云卫星数据的新疆太阳能资源潜力评价方法研究[J]. 太阳能学报, 2014, 35(7): 1295-1303.
LIU Y, ZHANG X F, LYU Y.Solar energy potential mapping and assessment in Xinjiang(China) based on the FY satellite data[J]. Acta energiae solaris sinica, 2014, 35(7): 1295-1303
[8] 黄守友, 徐国强. FY4A的LMIE闪电数据对云信息初始化的影响及数值试验[J]. 高原气象, 2020, 39(2): 378-392.
HUANG S Y, XU G Q.Influence of LMIE lightning data of FY4A on cloud information initialization and numerical experiment[J]. Plateau meteorology, 2020, 39(2): 378-392.
[9] 梁进秋, 申彦波, 胡丽琴, 等. FY-4A地表太阳入射辐射产品在山西高原的适用性研究[J]. 气象, 2020, 46(12): 1575-1585.
LIANG J Q, SHEN Y B, HU L Q, et al.Applicability of FY-4A surface solar irradiance products in the loess plateau of Shanxi[J]. Meteorological monthly, 2020, 46(12): 1575-1585.
[10] 鲍艳松, 殷佳研, 陆其峰. FY-3A MWHS资料偏差订正方法研究[J]. 热带气象学报, 2015, 31(6): 757-765.
BAO Y S, YIN J Y, LU Q F.A radiance-bias correction scheme of Fengyun 3A microwave humidity sounding for radiance assimilation[J]. Journal of tropical meteorology, 2015, 31(6): 757-765.
[11] 孙治安, 刘晶淼, 曾宪宁, 等. 晴天地表总辐射和净辐射瞬时值计算方法[J]. 气象与环境学报, 2014, 30(2): 1-13.
SUN Z A, LIU J M, ZENG X N, et al.Estimation of global and net solar radiation at the Earth surface under clear-sky condition[J]. Journal of meteorology and environment, 2014, 30(2): 1-13.
[12] 徐丽娜, 申彦波, 李忠, 等. 基于概率密度匹配方法的FY-4A地表入射太阳辐射订正[J]. 高原气象, 2021, 40(4): 932-942.
XU L N, SHEN Y B, LI Z, et al.Correction of FY-4A surface solar irradiance based on probability density function matching method[J]. Plateau meteorology, 2021, 40(4): 932-942.
[13] 李净, 温松楠. 基于3种机器学习法的太阳辐射模拟研究[J]. 遥感技术与应用, 2020, 35(3): 615-622.
LI J, WEN S N.Simulation of solar radiation based on three machine learning methods[J]. Remote sensing technology and application, 2020, 35(3): 615-622.
[14] YAO W X, ZHANG C X, HAO H D, et al.A support vector machine approach to estimate global solar radiation with the influence of fog and haze[J]. Renewable energy, 2018, 128: 155-162.
[15] 耿晓雯, 闵锦忠, 杨春, 等. FY-4A AGRI辐射率资料偏差特征分析及订正试验[J]. 大气科学, 2020, 44(4): 679-694.
GENG X W, MIN J Z, YANG C, et al.Analysis of FY-4A AGRI radiance data bias characteristics and a correction experiment[J]. Chinese journal of atmospheric sciences, 2020, 44(4): 679-694.
[16] LIN Y J, KRUGER U, ZHANG J P, et al.Seasonal analysis and prediction of wind energy using random forests and ARX model structures[J]. IEEE transactions on control systems technology, 2015, 23(5): 1994-2002.
[17] 孙全德, 焦瑞莉, 夏江江, 等. 基于机器学习的数值天气预报风速订正研究[J]. 气象, 2019, 45(3): 426-436.
SUN Q D, JIAO R L, XIA J J, et al.Adjusting wind speed prediction of numerical weather forecast model based on machine learning methods[J]. Meteorological monthly, 2019, 45(3): 426-436.
[18] 徐丽娜, 申彦波, 冯震, 等. 多种风电场风速预报订正方法的适用性研究与集成应用[J]. 干旱区地理, 2022, 45(4): 1114-1124.
XU L N, SHEN Y B, FENG Z, et al.Applicability research and integrated application of various correction methods for wind speed forecast in a wind farm[J]. Arid land geography, 2022, 45(4): 1114-1124.
[19] 王雪洁, 施国萍, 周子钦, 等. 基于随机森林算法对ERA5太阳辐射产品的订正[J]. 自然资源遥感, 2022, 34(2): 105-111.
WANG X J, SHI G P, ZHOU Z Q, et al.Revision of solar radiation product ERA5 based on random forest algorithm[J]. Remote sensing for natural resources, 2022, 34(2): 105-111.

基金

海南省南海气象防灾减灾重点实验室开放基金(SCSF202008); 中国气象局创新发展专项(CXFZ2022J040); 中国气象局公共 气象服务中心创新基金(M2023013)

PDF(3307 KB)

Accesses

Citation

Detail

段落导航
相关文章

/