基于TRNSYS模拟的多能源时序互补供暖系统研究

杨蕾, 杜永恒, 王国华, 孙旭灿, 朱俊超, 赵忠涛

太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 87-94.

PDF(2996 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2996 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 87-94. DOI: 10.19912/j.0254-0096.tynxb.2022-1510

基于TRNSYS模拟的多能源时序互补供暖系统研究

  • 杨蕾1, 杜永恒1,2, 王国华3, 孙旭灿1, 朱俊超1, 赵忠涛4
作者信息 +

RESEARCH ON MULTI-ENERGY SEQUENTIAL COMPLEMENTARY HEATING SYSTEM BASED ON TRNSYS SIMULATION

  • Yang Lei1, Du Yongheng1,2, Wang Guohua3, Sun Xucan1, Zhu Junchao1, Zhao Zhongtao4
Author information +
文章历史 +

摘要

针对典型气候区(郑州和哈尔滨)不同建筑类型的负荷特点,提出多能源时序互补集中式供暖系统,并对蓄热场的蓄取规律进行模拟分析。通过TRNSYS模拟,对多能源时序互补集中式供暖系统在不同建筑中运行时的蓄热场土壤平均温度、系统运行策略、能效提升率进行分析。结果表明:土壤平均温度处于动态平衡,公建系统土壤平均温度最高可达65 ℃;公建及寒冷地区居建系统运行策略均以太阳能直供和蓄热场直供为主要供热方式,地源热泵为辅,严寒地区居建系统运行策略是以地源热泵为主要供热方式,太阳能直供和蓄热场直供为辅;多能源时序互补集中式供暖系统与地源热泵系统相比能效提升明显,公建系统能效可提升90%以上,严寒地区居建系统能效提升59.12%。

Abstract

According to the load characteristics of different building types in typical climate zones (Zhengzhou and Harbin), a multi-energy sequential complementary central heating system was proposed, and the storage and extraction law of heat storage field was simulated and analyzed. Through Trnsys simulation, the average soil temperature of heat storage field, system operation strategy and energy efficiency improvement rate of multi-energy sequential complementary central heating system in different buildings were analyzed. The results showed that the average soil temperature was in dynamic equilibrium, and the highest average soil temperature was 65 ℃ in the public system. The operation strategy of the residential construction system in public buildings and cold areas takes solar direct supply and thermal storage field direct supply as the main heating mode, supplemented by ground source heat pump. The operation strategy of residential construction system in cold areas takes ground source heat pump as the main heating mode, and solar direct supply and thermal storage field direct supply as the auxiliary. Compared with the ground source heat pump system, the energy efficiency of the multi-energy sequential complementary central heating system is significantly improved. The energy efficiency of the public construction system can be increased by more than 90%, and the energy efficiency of the residential construction system in the cold area is increased by 59.12%.

关键词

太阳能 / 地源热泵 / TRNSYS模拟 / 能效比 / 土壤蓄热

Key words

solar energy / ground source heat pump / TRNSYS simulation / COP / soil heat storage

引用本文

导出引用
杨蕾, 杜永恒, 王国华, 孙旭灿, 朱俊超, 赵忠涛. 基于TRNSYS模拟的多能源时序互补供暖系统研究[J]. 太阳能学报. 2024, 45(1): 87-94 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1510
Yang Lei, Du Yongheng, Wang Guohua, Sun Xucan, Zhu Junchao, Zhao Zhongtao. RESEARCH ON MULTI-ENERGY SEQUENTIAL COMPLEMENTARY HEATING SYSTEM BASED ON TRNSYS SIMULATION[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 87-94 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1510
中图分类号: TE0   

参考文献

[1] 徐飞, 季永明, 端木琳. 基于TRNSYS模拟的太阳能土壤耦合热泵跨季蓄热效果影响因素分析[J]. 建筑科学, 2016, 32(4): 30-34, 59.
XU F, JI Y M, DUAN M L.Influence factor analysis on thermal storage effect of the solar-soil source heat pump system based on TRNSYS simulation[J]. Building science, 2016, 32(4): 30-34, 59.
[2] 王恩宇, 齐承英, 杨华, 等. 太阳能跨季节储热供热系统试验分析[J]. 太阳能学报, 2010, 31(3): 357-361.
WANG E Y, QI C Y, YANG H, et al.Experimental study of the solar seasonal storage and heating system[J]. Acta energiae solaris sinica, 2010, 31(3): 357-361.
[3] 王春林, 郭放, 朱永利, 等. 大规模太阳能跨季节土壤储热系统设计优化[J]. 太阳能学报, 2021, 42(4): 320-327.
WANG C L, GUO F, ZHU Y L, et al.Design and optimization of large-scale seasonal borehole thermal energy storage system for solar energy[J]. Acta energiae solaris sinica, 2021, 42(4): 320-327.
[4] 沈海笑, 王恩宇, 沈云祥, 等. 双地埋管群太阳能-地源热泵系统耦合方式研究[J]. 太阳能学报, 2020, 41(10): 361-368.
SHEN H X, WANG E Y, SHEN Y X, et al.Study on coupling methods of solar-ground source heat pump system with double buried pipe groups[J]. Acta energiae solaris sinica, 2020, 41(10): 361-368.
[5] 李好. 典型气候条件下太阳能-地源热泵季节性蓄热供热系统性能研究[D]. 上海: 上海交通大学, 2018.
LI H.Performance research on the hybrid solar-ground heat pump and seasonal energy storage system under the typical climate conditions[D]. Shanghai: Shanghai Jiao Tong University, 2018.
[6] 张姝. 严寒地区空气源土壤蓄热式热泵系统及运行特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
ZHANG S.The heat pump system with air-source oil heat storage and research on the peration characteristics in severe old area[D]. Harbin: Harbin Institute of Technology, 2013.
[7] HELLSTROM G.Ground heat storage thermal analysis of duct storage systems[D]. Lund: University of Land,1991.
[8] WANG E Y, FUNG A S, QI C Y, et al.Performance prediction of a hybrid solar ground-source heat pump system[J]. Energy and buildings, 2012, 47: 600-611.
[9] 尹丽媛. 基于TRNSYS的太阳能耦合土壤源热泵系统仿真研究[D]. 太原: 太原理工大学, 2013.
YIN L Y.Simulation study on trnsys based solar-earth source heat pump system[D]. Taiyuan: Taiyuan University of Technology, 2013.

基金

“十三五”国家重点研发计划(2018YFD1100705); 河南省重点研发专项(221111320200 )

PDF(2996 KB)

Accesses

Citation

Detail

段落导航
相关文章

/