“光火储”一体化发电系统的季节适应性分析

张金宏, 杨建蒙, 李斌, 冯天逸, 王雨萌

太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 300-308.

PDF(2614 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2614 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 300-308. DOI: 10.19912/j.0254-0096.tynxb.2022-1524

“光火储”一体化发电系统的季节适应性分析

  • 张金宏, 杨建蒙, 李斌, 冯天逸, 王雨萌
作者信息 +

SEASONAL ADAPTABILITY ANALYSIS OF INTEGRATED POWER GENERATION SYSTEM OF“PHOTOVOLTAIC THERMAL STORAGE”

  • Zhang Jinhong, Yang Jianmeng, Li Bin, Feng Tianyi, Wang Yumeng
Author information +
文章历史 +

摘要

为探索基于压缩空气储能的“光火储”一体化发电系统的季节适应性,选取一年内4个典型日分别代表春夏秋冬4个季节,研究季节特性对一体化发电系统5种运行模式的影响。结果表明:季节变化时,一体化发电系统性能变化较大,其中模式2、3性能受季节变化影响最大,模式4不受季节影响但性能较差,模式5季节适应性最好。此外,一体化发电系统可依据实际运行条件灵活选择运行模式,避免能源浪费。

Abstract

In order to explore the seasonal adaptability of the integrated power generation system of “photovoltaic thermal storage” based on compressed air energy storage, four typical days in a year are selected to represent four seasons of spring, summer, autumn and winter, the influence of seasonal characteristics on the five operating modes of the integrated power generation system are studied. The results show that the performance of the integrated power generation system changes greatly when the season changes. Among them, the performance of mode 2 and mode 3 is most affected by seasonal changes, mode 4 is not affected by the season but the performance is poor, and mode 5 has the best seasonal adaptability. In addition, the integrated power generation system can flexibly select the operation mode according to the actual operating conditions to improve the system efficiency.

关键词

太阳能 / 储热 / 压缩空气储能 / 调峰性能 / 节能减排

Key words

solar energy / heat storage / compressed air energy storage / peak shaving performance / conserve energy and reduce emissions

引用本文

导出引用
张金宏, 杨建蒙, 李斌, 冯天逸, 王雨萌. “光火储”一体化发电系统的季节适应性分析[J]. 太阳能学报. 2024, 45(2): 300-308 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1524
Zhang Jinhong, Yang Jianmeng, Li Bin, Feng Tianyi, Wang Yumeng. SEASONAL ADAPTABILITY ANALYSIS OF INTEGRATED POWER GENERATION SYSTEM OF“PHOTOVOLTAIC THERMAL STORAGE”[J]. Acta Energiae Solaris Sinica. 2024, 45(2): 300-308 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1524
中图分类号: TK519   

参考文献

[1] WANG Y, GUO C H, CHEN X J, et al.Carbon peak and carbon neutrality in China: goals, implementation path and prospects[J]. China geology, 2021, 4(4): 720-746.
[2] 李克强. 政府工作报告:2021年3月5日在第十三届全国人民代表大会第四次会议上[J]. 中华人民共和国国务院公报, 2021(8): 5-17.
LI K Q. Government work report—delivered at the fourth session of the Thirteenth National People’s Congress on March 5, 2021[J]. Gazette of the State Council of the People’s Republic of China, 2021(8): 5-17.
[3] 杨若朴. “双碳”目标下构建新型电力系统的挑战与对策[J]. 中外能源, 2022, 27(7): 17-22.
YANG R P.Challenges and countermeasures for building a new power system under the goal of achieving carbon peaking and carbon neutrality[J]. Sino-global energy, 2022, 27(7): 17-22.
[4] 滕苏郸, 宫一玉, 张璞, 等. 2019年8月9日英国大停电事故分析及对北京电网安全稳定运行的启示[J]. 电力勘测设计, 2020(2): 5-8.
TENG S D, GONG Y Y, ZHANG P, et al. Analysis of great blackout accident in Britain on August 9, 2019 and enlightenment to Beijing power network[J]. Electric power survey & design, 2020(2): 5-8.
[5] 杨学民, 高晓明. 中国能源经济安全发展探究: 基于美国得克萨斯州停电的启示[J]. 中国市场, 2022(17): 4-6.
YANG X M, GAO X M.Exploration on the safe development of energy economy in China—based on the enlightenment of Texas blackout[J]. China market, 2022(17): 4-6.
[6] DENG S M.Hybrid solar and coal-fired steam power plant based on air preheating[J]. Journal of solar energy engineering, 2014, 136(2): 021012.
[7] LIU H T, ZHAI R R, PATCHIGOLLA K, et al.Off-design thermodynamic performances of a combined solar tower and parabolic trough aided coal-fired power plant[J]. Applied thermal engineering, 2021, 183: 116199.
[8] ADIBHATLA S, KAUSHIK S C.Energy, exergy, economic and environmental (4E) analyses of a conceptual solar aided coal fired 500 MWe thermal power plant with thermal energy storage option[J]. Sustainable energy technologies and assessments, 2017, 21: 89-99.
[9] 王惠杰, 董学会, 昝永超, 等. 熔盐储热型塔式太阳能与燃煤机组耦合方式及热力性能分析[J]. 热力发电, 2019, 48(7): 47-52.
WANG H J, DONG X H, ZAN Y C, et al.Coupling method and thermal performance analysis for molten salt heat storage tower solar energy power station and thermal power unit[J]. Thermal power generation, 2019, 48(7): 47-52.
[10] 徐文韬. 带储热装置的太阳能辅助燃煤发电系统研[D]. 北京: 华北电力大学, 2020.
XU W T.Research on solar-assisted coal-fired power generation system with heat storage device[D]. Beijing: North China Electric Power University, 2020.
[11] 李斌, 王雨萌, 张庆来, 等. “光火储”一体化发电系统研究[J]. 热力发电, 2022, 51(2): 56-64.
LI B, WANG Y M, ZHANG Q L, et al.Research on integrated power generation system of “solar, coal-fired power and energy storage”[J]. Thermal power generation, 2022, 51(2): 56-64.
[12] LI X Y, WANG Y M, ZHANG X J, et al.Increasing coal-fired power plant operational flexibility by integrating solar thermal energy and compressed air energy storage system[J]. Journal of thermal science, 2023, 32(6): 2032-2047.
[13] 李斌, 陈吉玲, 李晨昕, 等. 压缩空气储能系统与火电机组的耦合方案研究[J]. 动力工程学报, 2021, 41(3): 244-250.
LI B, CHEN J L, LI C X, et al.Research on coupling schemes of a compressed air energy storage system and thermal power unit[J]. Journal of Chinese Society of Power Engineering, 2021, 41(3): 244-250.

PDF(2614 KB)

Accesses

Citation

Detail

段落导航
相关文章

/