针对现有低电压穿越(LVRT)研究难以准确全面评估变流器同步运行能力的问题,首先结合LVRT特性和电网侧特性定量研究不同因素对准静态平衡点的影响,揭示系统准静态平衡点的存在条件。其次,分析LVRT特性对并网逆变器暂态稳定性和小信号稳定性的影响,明晰电网故障期间系统不仅存在暂态失步的风险,而且难以在准静态平衡点稳定运行。基于以上理论分析,提出一种提高并网逆变器LVRT同步运行能力的优化策略。该策略在LVRT期间根据电网运行状态自适应调整锁相环参数,不仅可降低系统暂态失步的风险,还可增强其小信号稳定裕度。最后,通过仿真和实验验证了理论分析的正确性和优化策略的有效性。
Abstract
To address the problem that the existing low voltage ride-through(LVRT) studies cannot accurately and comprehensively assess the synchronous operation capability of converters, the effects of different factors on the quasi-static equilibrium point are quantitatively investigated by combining the LVRT characteristics and the grid-side characteristics, and the existence conditions of the quasi-static equilibrium point of the system are revealed. The influence of LVRT characteristics on the transient stability and small-signal stability of grid-connected inverters is analyzed, and it is clarified that the system not only has the risk of transient loss of synchronization during grid faults but also is difficult to operate stably at the quasi-static equilibrium point. Based on the above theoretical analysis, an optimization strategy for improving the LVRT synchronous operation capability of grid-connected inverters is proposed. The strategy adaptively adjusts the phase-locked loop parameters according to the grid operation state during LVRT, which not only reduces the risk of system transient loss of synchronization but also enhances its small signal stability margin. Finally, the correctness of the theoretical analysis and the effectiveness of the optimization strategy is verified by simulation and experiments.
关键词
逆变器 /
暂态稳定性 /
锁相环 /
小信号稳定性 /
准静态平衡点
Key words
inverter /
transient stability /
phase locked loop /
small-signal stability /
quasi-static equilibrium point
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893-1904, 2205.
ZHOU X X, CHEN S Y, LU Z X, et al.Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893-1904, 2205.
[2] 张兴, 李明, 郭梓暄, 等. 新能源并网逆变器控制策略研究综述与展望[J]. 全球能源互联网, 2021, 4(5): 506-515.
ZHANG X, LI M, GUO Z X, et al.Review and perspectives on control strategies for renewable energy grid-connected inverters[J]. Journal of global energy interconnection, 2021, 4(5): 506-515.
[3] 孙大卫, 吴林林, 刘辉, 等. 弱电网直驱风机低电压穿越特性及其对机端暂态电压的影响[J]. 中国电机工程学报, 2021, 41(14): 4777-4786.
SUN D W, WU L L, LIU H, et al.Effect of the low voltage ride through characteristics on PMSG terminal transient voltage in weakly-synchronized gird[J]. Proceedings of the CSEE, 2021, 41(14): 4777-4786.
[4] GUAN L, YAO J, LIU R K, et al.Small-signal stability analysis and enhanced control strategy for VSC system during weak-grid asymmetric faults[J]. IEEE transactions on sustainable energy, 2021, 12(4): 2074-2085.
[5] 李泽宇. 弱电网下双馈风电机组低电压穿越研究[D]. 合肥: 合肥工业大学, 2019.
LI Z Y.LVRT study of DFIG-based wind turbines in weak grid[D]. Hefei: Hefei University of Technology, 2019.
[6] 徐殿国, 王伟, 陈宁. 基于撬棒保护的双馈电机风电场低电压穿越动态特性分析[J]. 中国电机工程学报, 2010, 30(22): 29-36.
XU D G, WANG W, CHEN N.Dynamic characteristic analysis of doubly-fed induction generator low voltage ride-through based on crowbar protection[J]. Proceedings of the CSEE, 2010, 30(22): 29-36.
[7] 罗嘉, 赵浩然, 高术宁, 等. 基于显式模型预测控制和改进虚拟阻抗的双馈风机低电压穿越策略[J]. 电网技术, 2021, 45(5): 1716-1723.
LUO J, ZHAO H R, GAO S N, et al.LVRT strategy for DFIG based on explicit model predictive control and improved virtual impedance[J]. Power system technology, 2021, 45(5): 1716-1723.
[8] 欧阳森, 马文杰. 考虑电压故障类型的光伏逆变器低电压穿越控制策略[J]. 电力自动化设备, 2018, 38(9): 21-26.
OUYANG S, MA W J.Low voltage ride through control strategy of photovoltaic inverter considering voltage fault type[J]. Electric power automation equipment, 2018, 38(9): 21-26.
[9] 袁辉, 辛焕海, 王康, 等. 弱电网下远端严重电压跌落时逆变器并网失稳机理分析[J]. 电力系统自动化, 2018, 42(22): 38-43, 117.
YUAN H, XIN H H, WANG K, et al.Instability mechanism analysis of inverters connected to weak grid during severe voltage sag on remote grid side[J]. Automation of electric power systems, 2018, 42(22): 38-43, 117.
[10] WEISE B.Impact of K-factor and active current reduction during fault-ride-through of generating units connected via voltage-sourced converters on power system stability[J]. IET renewable power generation, 2015, 9(1): 25-36.
[11] ZHAO J T, HUANG M, ZHA X M.Nonlinear analysis of PLL damping characteristics in weak-grid-tied inverters[J]. IEEE transactions on circuits and systems II: express briefs, 2020, 67(11): 2752-2756.
[12] 张宇, 蔡旭, 张琛, 等. 并网变换器的暂态同步稳定性研究综述[J]. 中国电机工程学报, 2021, 41(5): 1687-1702.
ZHANG Y, CAI X, ZHANG C, et al.Transient synchronization stability analysis of voltage source converters: a review[J]. Proceedings of the CSEE, 2021, 41(5): 1687-1702.
[13] WU H, WANG X F.Transient stability impact of the phase-locked loop on grid-connected voltage source converters[C]//2018 International Power Electronics Conference (IPEC-Niigata 2018-ECCE Asia), Niigata, Japan, 2018: 2673-2680.
[14] WU H, WANG X F.An adaptive phase-locked loop for the transient stability enhancement of grid-connected voltage source converters[C]//2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 2018: 5892-5898.
[15] HE X Q, GENG H, XI J B, et al.Resynchronization analysis and improvement of grid-connected VSCs during grid faults[J]. IEEE journal of emerging and selected topics in power electronics, 2021, 9(1): 438-450.
[16] LIU Y, YAO J, PEI J X, et al.Transient stability enhancement control strategy based on improved PLL for grid connected VSC during severe grid fault[J]. IEEE transactions on energy conversion, 2021, 36(1): 218-229.
[17] 胡寿松. 自动控制原理[M]. 4版. 北京: 科学出版社, 2001.
HU S S.Principle of automatic control[M]. 4th ed. Beijing: Science Press, 2001.
[18] 张琛, 蔡旭, 李征. 全功率变换风电机组的暂态稳定性分析[J]. 中国电机工程学报, 2017, 37(14): 4018-4026, 4280.
ZHANG C, CAI X, LI Z.Transient stability analysis of wind turbines with full-scale voltage source converter[J]. Proceedings of the CSEE, 2017, 37(14): 4018-4026, 4280.
基金
国家重点研发计划(2022YFB4202301); 国家自然科学基金重点项目(51937003)