基于主从博弈的工业园区运营商与分布式光储用户购售电优化决策

张青苗, 陈来军, 李笑竹, 梅生伟

太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 450-456.

PDF(1786 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1786 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 450-456. DOI: 10.19912/j.0254-0096.tynxb.2022-1527

基于主从博弈的工业园区运营商与分布式光储用户购售电优化决策

  • 张青苗1, 陈来军1, 李笑竹2, 梅生伟1,2
作者信息 +

OPTIMIZATION DECISION OF PURCHASING AND SELLING POWER BETWEEN INDUSTRIAL PARK OPERATORS AND DISTRIBUTED OPTICAL STORAGE USERS BASED ON STACKELBERG GAME

  • Zhang Qingmiao1, Chen Laijun1, Li Xiaozhu2, Mei Shengwei1,2
Author information +
文章历史 +

摘要

随着分布式光伏大量接入园区用户侧,其随机性与波动性使得工业园区微电网下的能量管理愈发困难,储能为缓解上述问题提供了有效的手段。为实现园区用户侧新能源高效消纳及储能资源合理利用、兼顾多园区用户的利益诉求,提出一种基于主从博弈的工业园区运营商与分布式光储用户购售电优化模型。模型中利用工业园区用能运营商对多用户的能量进行统一管理,利用价格信息引导园区用户调整用电策略,利用分布式储能“低储高发”特性协调运营商与用户间的能量交互;并通过仿真算例验证所提方法的可行性和有效性。结果表明:基于主从博弈的工业园区运营商与分布式光储用户购售电优化决策,能够兼顾园区运营商和用户的经济性,促进新能源与储能的协同发展。

Abstract

With a large number of distributed photovoltaics connected to the user side of the park, its randomness and volatility make energy management in the industrial park microgrid more and more difficult. Energy storage provides an effective means to alleviate the above problems. In order to realize the efficient consumption of new energy on the user side of the park and the rational utilization of energy storage resources, and take into account the interests of users in multiple parks, an optimization model of power purchase and sale between industrial park operators and distributed optical storage users based on stackelberg game was proposed. In the model, the energy-consuming operators of the industrial park are used to manage the energy of multiple users in a unified manner, the price information is used to guide the users in the park to adjust the power consumption strategy, and the energy interaction between the operators and users is coordinated by the “low storage and high power generation” characteristics of distributed energy storage; and the feasibility and effectiveness of the proposed method are verified by a simulation example. The results show that the power purchase and sale optimization decision of industrial park operators and distributed optical storage users based on stackelberg game can give consideration to the economy of park operators and users, and promote the coordinated development of new energy and energy storage.

关键词

分布式发电 / 优化决策 / 储能 / 能量交互 / 主从博弈

Key words

distributed power generation / decision making / energy storage / energy transfer / stackelberg game

引用本文

导出引用
张青苗, 陈来军, 李笑竹, 梅生伟. 基于主从博弈的工业园区运营商与分布式光储用户购售电优化决策[J]. 太阳能学报. 2024, 45(1): 450-456 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1527
Zhang Qingmiao, Chen Laijun, Li Xiaozhu, Mei Shengwei. OPTIMIZATION DECISION OF PURCHASING AND SELLING POWER BETWEEN INDUSTRIAL PARK OPERATORS AND DISTRIBUTED OPTICAL STORAGE USERS BASED ON STACKELBERG GAME[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 450-456 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1527
中图分类号: TM715   

参考文献

[1] 丛鹏伟, 唐巍, 娄铖伟, 等. 含高渗透率可再生能源的主动配电网两阶段柔性软开关与联络开关协调优化控制[J]. 电工技术学报, 2019, 34(6): 1263-1272.
CONG P W, TANG W, LOU C W, et al.Two-stage coordination optimization control of soft open point and tie switch in active distribution network with high penetration renewable energy generation[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1263-1272.
[2] 宋航, 刘友波, 刘俊勇, 等. 考虑用户侧分布式储能交互的售电公司智能化动态定价[J]. 中国电机工程学报, 2020, 40(24): 7959-7972, 8233.
SONG H, LIU Y B, LIU J Y, et al.Intelligent dynamic pricing of electricity retailers considering distributed energy storage interaction on user side[J]. Proceedings of the CSEE, 2020, 40(24): 7959-7972, 8233.
[3] MURTY V V S N, KUMAR A. Retraction note: multi-objective energy management in microgrids with hybrid energy sources and battery energy storage systems[J]. Protection and control of modern power systems, 2022, 7(1): 1.
[4] 李建林, 方知进, 谭宇良, 等. 电化学储能系统在整县制屋顶光伏中应用前景分析[J]. 太阳能学报, 2022, 43(4): 1-12.
LI J L, FANG Z J, TAN Y L, et al.Application prospect analysis of electrochemical energy storage technology in county-wide rooftop photovoltaic system[J]. Acta energiae solaris sinica, 2022, 43(4): 1-12.
[5] LIU N, CHENG M Y, YU X H, et al.Energy-sharing provider for PV prosumer clusters: a hybrid approach using stochastic programming and stackelberg game[J]. IEEE transactions on industrial electronics, 2018, 65(8): 6740-6750.
[6] 董厚琦, 王俐英, 曹雨微, 等. 考虑用户价格需求响应的光-储充电站容量配置与定价方法研究[J]. 太阳能学报, 2021, 42(6): 79-86.
DONG H Q, WANG L Y, CAO Y W, et al.Capacity configuration and pricing designing method of PV-storage charging station considering user demand response[J]. Acta energiae solaris sinica, 2021, 42(6): 79-86.
[7] 袁晓冬, 费骏韬, 胡波, 等. 资源聚合商模式下的分布式电源、储能与柔性负荷联合调度模型[J]. 电力系统保护与控制, 2019, 47(22): 17-26.
YUAN X D,FEI J T,HU B,et al.Joint scheduling model of distributed generation, energy storage and flexible load under resource aggregator mode[J]. Power system protection and control, 2019, 47(22): 17-26.
[8] 陈昌铭, 张群, 黄亦昕, 等. 考虑最优建设时序和云储能的园区综合能源系统优化配置方法[J]. 电力系统自动化, 2022, 46(2): 24-32.
CHEN C M, ZHANG Q, HUANG Y X, et al.Optimal configuration method of park-level integrated energy system considering optimal construction time sequence and cloud energy storage[J]. Automation of electric power systems, 2022, 46(2): 24-32.
[9] 李建林, 牛萌, 周喜超, 等. 能源互联网中微能源系统储能容量规划及投资效益分析[J]. 电工技术学报, 2020, 35(4): 874-884.
LI J L, NIU M, ZHOU X C, et al.Energy storage capacity planning and investment benefit analysis of micro-energy system in energy interconnection[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 874-884.
[10] 李相俊, 盛兴, 闫士杰, 等. 基于交替方向乘子法的超大规模储能系统分布式协同优化[J]. 电网技术, 2020, 44(5): 1681-1688.
LI X J, SHENG X, YAN S J, et al.Distributed cooperative optimization for ultra-large-scale storage system based on alternating direction multiplier method[J]. Power system technology, 2020, 44(5): 1681-1688.
[11] 王皓, 艾芊, 吴俊宏, 等. 基于交替方向乘子法的微电网群双层分布式调度方法[J]. 电网技术, 2018, 42(6): 1718-1727.
WANG H, AI Q, WU J H, et al.Bi-level distributed optimization for microgrid clusters based on alternating direction method of multipliers[J]. Power system technology, 2018, 42(6): 1718-1727.
[12] 杨锡运, 董德华, 李相俊, 等. 商业园区储能系统削峰填谷的有功功率协调控制策略[J]. 电网技术, 2018, 42(8): 2551-2561.
YANG X Y, DONG D H, LI X J, et al.Active power coordinated control strategy of peak load shifting for energy storage system in business park[J]. Power system technology, 2018, 42(8): 2551-2561.
[13] CHIS A, KOIVUNEN V.Coalitional game-based cost optimization of energy portfolio in smart grid communities[J]. IEEE transactions on smart grid, 2019, 10(2): 1960-1970.
[14] 郭晓利, 赵莹, 曲楠, 等. 基于满意度的户用型微电网多属性需求响应策略[J]. 太阳能学报, 2021, 42(7): 21-27.
GUO X L, ZHAO Y, QU N, et al.Multi-attribute demand response strategy of household microgrid based on satisfaction[J]. Acta energiae solaris sinica, 2021, 42(7): 21-27.
[15] 张迪, 苗世洪, 赵健, 等. 分布式发电市场化环境下扶贫光伏布点定容双层优化模型研究[J]. 电工技术学报, 2019, 34(10): 1999-2010.
ZHANG D, MIAO S H, ZHAO J, et al.A bi-level locating and sizing optimal model for poverty alleviation PVs considering the marketization environment of distributed generation[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 1999-2010.
[16] 巨云涛, 黄炎, 张若思. 基于二阶锥规划凸松弛的三相交直流混合主动配电网最优潮流[J]. 电工技术学报, 2021, 36(9): 1866-1875.
JU Y T, HUANG Y, ZHANG R S.Optimal power flow of three-phase hybrid AC-DC in active distribution network based on second order cone programming[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1866-1875.
[17] 程杉, 陈梓铭, 王瑞, 等. 基于混合博弈的多微电网双层协调优化调度[J]. 电力自动化设备, 2021, 41(8): 41-46.
CHENG S, CHEN Z M, WANG R, et al.Double-layer coordinated optimal dispatching of multi-microgrid based on mixed game[J]. Electric power automation equipment, 2021, 41(8): 41-46.
[18] 王祺, 尚雯, 常兆丰, 等. 沙漠戈壁光伏产业太阳能利用率研究: 以甘肃河西走廊为例[J]. 太阳能学报, 2020, 41(11): 126-134.
WANG Q, SHANG W, CHANG Z F, et al.Study on solar energy utilization of photovoltaic industry in Gobi and desert regions: take Gansu Hexi corridor as an example[J]. Acta energiae solaris sinica, 2020, 41(11): 126-134.

基金

国家自然科学基金(52077109); 国网青海省电力公司经济技术研究院科学技术项目(SGQHJY00GHJS2100269); 中国博士后科学基金(2022M720071)

PDF(1786 KB)

Accesses

Citation

Detail

段落导航
相关文章

/