考虑系统故障随机性的电热联合系统备用与DNE分布鲁棒协同优化调度

刘鸿鹏, 李宏伟, 马建伟, 陈继开, 张伟

太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 318-327.

PDF(1944 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1944 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 318-327. DOI: 10.19912/j.0254-0096.tynxb.2022-1528

考虑系统故障随机性的电热联合系统备用与DNE分布鲁棒协同优化调度

  • 刘鸿鹏1, 李宏伟1, 马建伟1,2, 陈继开1, 张伟1
作者信息 +

DISTRIBUTIONALLY ROBUST COOPERATIVE OPTIMAL SCHEDULING OF RESERVE AND DNE OF INTEGRATED ELECTRICITY AND HEATING SYSTEM FAULT RANDOMNESS

  • Liu Hongpeng1, Li Hongwei1, Ma Jianwei1,2, Chen Jikai1, Zhang Wei1
Author information +
文章历史 +

摘要

为实现电热联合系统的安全稳定运行,提高可再生能源消纳,提出考虑系统设备故障随机性的电热联合系统备用与“不超过”(DNE)分布鲁棒协同优化调度模型。首先,以常规机组和热电联产机组运行成本最小为综合优化目标,电功率平衡约束、热功率平衡约束等为约束条件,建立确定性电热联合系统优化调度模型;其次,在综合考虑风电功率、设备故障随机性以及DNE极限基础上建立电热联合系统分布鲁棒优化调度模型;最后,以修改的9节点系统为例,验证了所提模型可有效提高风电消纳率和系统的经济性。

Abstract

To achieve safe and stable operation of the integrated electric heating systems (IEHS) and improve the consumption of renewable energy, a distributionally robust cooperative optimal dispatching model of reserve and do-not-exceed (DNE) of IEHS considering the equipment fault randomness is proposed. Firstly, the deterministic optimal dispatching model of IEHS is established with the minimum operation cost of conventional units and combined heat and power units as the comprehensive optimization objective, and the power/heat balance and safety constraints as the constraints conditions; Secondly, the distributionally robust optimal dispatching model of IEHS is established, which comprehensively considers the wind power, equipment fault randomness and DNE limit. Finally, taking a modified 9-bus system is taken as an example, it is verified that the proposed model can effectively improve the wind power consumption rate and system economy.

关键词

电热联合系统 / 分布鲁棒优化 / 风电不确定性 / 设备故障随机性 / DNE极限

Key words

integrated electricity and heating systems / distributionally robust optimization / wind power uncertainty / equipment fault randomness / DNE limit

引用本文

导出引用
刘鸿鹏, 李宏伟, 马建伟, 陈继开, 张伟. 考虑系统故障随机性的电热联合系统备用与DNE分布鲁棒协同优化调度[J]. 太阳能学报. 2024, 45(2): 318-327 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1528
Liu Hongpeng, Li Hongwei, Ma Jianwei, Chen Jikai, Zhang Wei. DISTRIBUTIONALLY ROBUST COOPERATIVE OPTIMAL SCHEDULING OF RESERVE AND DNE OF INTEGRATED ELECTRICITY AND HEATING SYSTEM FAULT RANDOMNESS[J]. Acta Energiae Solaris Sinica. 2024, 45(2): 318-327 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1528
中图分类号: TM734   

参考文献

[1] 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9): 2-11.
KANG C Q, YAO L Z.Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of electric power systems, 2017, 41(9): 2-11.
[2] PAPAVASILIOU A, OREN S S, O’NEILL R P. Reserve requirements for wind power integration: a scenario-based stochastic programming framework[J]. IEEE transactions on power systems, 2011, 26(4): 2197-2206.
[3] WANG Q F, GUAN Y P, WANG J H.A chance-constrained two-stage stochastic program for unit commitment with uncertain wind power output[J]. IEEE transactions on power systems, 2012, 27(1): 206-215.
[4] HUO D, GU C H, MA K, et al.Chance-constrained optimization for multienergy hub systems in a smart city[J]. IEEE transactions on industrial electronics, 2019, 66(2): 1402-1412.
[5] JIANG R W, WANG J H, GUAN Y P.Robust unit commitment with wind power and pumped storage hydro[J]. IEEE transactions on power systems, 2012, 27(2): 800-810.
[6] BERTSIMAS D, LITVINOV E, SUN X A, et al.Adaptive robust optimization for the security constrained unit commitment problem[J]. IEEE transactions on power systems, 2013, 28(1): 52-63.
[7] LU X H, LIU Z X, MA L, et al.A robust optimization approach for optimal load dispatch of community energy hub[J]. Applied energy, 2020, 259: 114195.
[8] WEI W, LIU F, MEI S W.Dispatchable region of the variable wind generation[J]. IEEE transactions on power systems, 2015, 30(5): 2755-2765.
[9] SHAO C C, WANG X F, SHAHIDEHPOUR M, et al.Security-constrained unit commitment with flexible uncertainty set for variable wind power[J]. IEEE transactions on sustainable energy, 2017, 8(3): 1237-1246.
[10] ZHAO J Y, ZHENG T X, LITVINOV E.Variable resource dispatch through do-not-exceed limit[J]. IEEE transactions on power systems, 2015, 30(2): 820-828.
[11] WEI W, LIU F, MEI S W.Real-time dispatchability of bulk power systems with volatile renewable generations[J]. IEEE transactions on sustainable energy, 2015, 6(3): 738-747.
[12] 田坤鹏, 孙伟卿, 韩冬, 等. 基于两阶段鲁棒优化的可再生能源DNE极限评估[J]. 电力系统保护与控制, 2020, 48(19): 73-80.
TIAN K P, SUN W Q, HAN D, et al.DNE limit assessment of renewable energy based on two-stage robust optimization[J]. Power system protection and control, 2020, 48(19): 73-80.
[13] SHAO C C, WANG X F, SHAHIDEHPOUR M, et al.Power system economic dispatch considering steady-state secure region for wind power[J]. IEEE transactions on sustainable energy, 2017, 8(1): 268-278.
[14] LI Z G, WU W C, ZHANG B M, et al.Adjustable robust real-time power dispatch with large-scale wind power integration[J]. IEEE transactions on sustainable energy, 2015, 6(2): 357-368.
[15] WEI W, WANG J H, MEI S W.Dispatchability maximization for co-optimized energy and reserve dispatch with explicit reliability guarantee[J]. IEEE transactions on power systems, 2016, 31(4): 3276-3288.
[16] 税月, 刘俊勇, 高红均, 等. 考虑风电不确定性的电热综合系统分布鲁棒协调优化调度模型[J]. 中国电机工程学报, 2018, 38(24): 7235-7247, 7450.
SHUI Y, LIU J Y, GAO H J, et al.A distributionally robust coordinated dispatch model for integrated electricity and heating systems considering uncertainty of wind power[J]. Proceedings of the CSEE, 2018, 38(24): 7235-7247, 7450.
[17] LU X, CHAN K W, XIA S W, et al.Security-constrained multiperiod economic dispatch with renewable energy utilizing distributionally robust optimization[J]. IEEE transactions on sustainable energy, 2019, 10(2): 768-779.
[18] YANG Y, WU W C.A distributionally robust optimization model for real-time power dispatch in distribution networks[J]. IEEE transactions on smart grid, 2019, 10(4): 3743-3752.
[19] 贺帅佳, 阮贺彬, 高红均, 等. 分布鲁棒优化方法在电力系统中的理论分析与应用综述[J]. 电力系统自动化, 2020, 44(14): 179-191.
HE S J, RUAN H B, GAO H J, et al.Overview on theory analysis and application of distributionally robust optimization method in power system[J]. Automation of electric power systems, 2020, 44(14): 179-191.
[20] MA H Y, JIANG R W, YAN Z.Distributionally robust co-optimization of power dispatch and do-not-exceed limits[J]. IEEE transactions on power systems, 2020, 35(2): 887-897.
[21] LI R, WANG M Q, YANG M, et al.A distributionally robust model for reserve optimization considering contingency probability uncertainty[J]. International journal of electrical power & energy systems, 2022, 134: 107174.
[22] WOOD J, WOLLENBERG F.Power generation, operation, and control[M]. 2nd ed. New York: J. Wiley & Sons, 1996.
[23] BILLINTON R, ALLAN R N.Reliability evaluation of power systems[M]. 2nd ed. New York, London: Plenum Press, 1996.
[24] BOUFFARD F,GALIANA F D, CONEJO A J.Market-clearing with stochastic security-part I: formulation[J].IEEE transactions on power systems, 2005, 20(4): 1818-1826.
[25] BOUFFARD F, GALIANA F D, CONEJO A J.Market-clearing with stochastic security-part II: case studies[J].IEEE transactions on power systems, 2005, 20(4): 1827-1835.
[26] ZHAO C Y, JIANG R W.Distributionally robust contingency-constrained unit commitment[J]. IEEE transactions on power systems, 2018, 33(1): 94-102.
[27] ZHU R J, WEI H, BAI X Q.Wasserstein metric based distributionally robust approximate framework for unit commitment[J]. IEEE transactions on power systems, 2019, 34(4): 2991-3001.
[28] WEI W, LIU F, MEI S W, et al.Two-level unit commitment and reserve level adjustment considering large-scale wind power integration[J]. International transactions on electrical energy systems, 2014, 24(12): 1726-1746.

基金

国家自然科学基金(52077030)

PDF(1944 KB)

Accesses

Citation

Detail

段落导航
相关文章

/