基于功率特征的K-ISSA-LSTM光伏功率预测

金伟勇, 卢丽娜, 赖欢欢, 张森林

太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 429-434.

PDF(1848 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1848 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 429-434. DOI: 10.19912/j.0254-0096.tynxb.2022-1532

基于功率特征的K-ISSA-LSTM光伏功率预测

  • 金伟勇1, 卢丽娜2, 赖欢欢3, 张森林1
作者信息 +

K-ISSA-LSTM PHOTOVOLTAIC POWER PREDICTION BASED ON POWER CHARACTERISTIC

  • Jin Weiyong1, Lu Li’na2, Lai Huanhuan3, Zhang Senlin1
Author information +
文章历史 +

摘要

历史功率特征能反映一段时间内光伏功率的波动情况,结合聚类算法对原始数据进行聚类,利用长短期记忆神经网络实现对光伏发电功率的预测。同时使用改进的麻雀搜索算法进行神经网络超参数寻优,实现对不同功率特征场景的超参数优化。采用华东地区某光伏电站的实测数据进行验证,预测模型功率波动情况下较传统预测方法对该组数据有更高的预测精度。

Abstract

Improving the accuracy of photovoltaic power prediction is of great value to the stable operation of the power system. The historical power characteristics can reflect the fluctuation of photovoltaic power over a period of time, using clustering algorithms to cluster the raw data, and the long-term short-term memory neural network is used to predict the photovoltaic power generation. At the same time, the improved sparrow search algorithm is used to optimize the hyperparameters of neural networks to realize the hyperparameter optimization of different power feature scenarios. Using the measured data of a photovoltaic power station in East China for verification, the prediction model has higher prediction accuracy than the traditional prediction method in the case of power fluctuation.

关键词

光伏功率 / 预测 / 聚类算法 / 长短期记忆 / 麻雀搜索算法

Key words

photovoltaic power / forecasting / clustering algorithms / long short-term memory / sparrow search algorithm

引用本文

导出引用
金伟勇, 卢丽娜, 赖欢欢, 张森林. 基于功率特征的K-ISSA-LSTM光伏功率预测[J]. 太阳能学报. 2024, 45(2): 429-434 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1532
Jin Weiyong, Lu Li’na, Lai Huanhuan, Zhang Senlin. K-ISSA-LSTM PHOTOVOLTAIC POWER PREDICTION BASED ON POWER CHARACTERISTIC[J]. Acta Energiae Solaris Sinica. 2024, 45(2): 429-434 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1532
中图分类号: TM615   

参考文献

[1] 吴硕. 光伏发电系统功率预测方法研究综述[J]. 热能动力工程, 2021, 36(8): 1-7.
WU S.Review of power forecasting methods of photovoltaic power generation system[J]. Journal of engineering for thermal energy and power, 2021, 36(8): 1-7.
[2] 张雪松, 李鹏, 周亦尧, 等. 基于贝叶斯概率的光伏出力组合预测方法[J]. 太阳能学报, 2021, 42(10): 80-86.
ZHANG X S, LI P, ZHOU Y Y, et al.Photovoltaic output combination forecasting method based on Bayesian probability[J]. Acta energiae solaris sinica, 2021, 42(10): 80-86.
[3] LIU R S, ASEMOTA G N O, BENIMANA S, et al. Comparison of nonlinear autoregressive neural networks without and with external inputs for PV output power prediction[C]//2020 IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS). Dalian, China, 2020: 145-149.
[4] CHAI M K, XIA F, HAO S T, et al.PV power prediction based on LSTM with adaptive hyperparameter adjustment[J]. IEEE access, 2019, 7: 115473-115486.
[5] 王福忠, 王帅峰, 张丽. 基于VMD-LSTM与误差补偿的光伏发电超短期功率预测[J]. 太阳能学报, 2022, 43(8): 96-103.
WANG F Z, WANG S F, ZHANG L.Ultra short term power prediction of photovoltaic power generation based on VMD-LSTM and error compensation[J]. Acta energiae solaris sinica, 2022, 43(8): 96-103.
[6] 崔佳豪, 毕利. 基于混合神经网络的光伏电量预测模型的研究[J]. 电力系统保护与控制, 2021, 49(13): 142-149.
CUI J H, BI L.Research on photovoltaic power forecasting model based on hybrid neural network[J]. Power system protection and control, 2021, 49(13): 142-149.
[7] 谭海旺, 杨启亮, 邢建春, 等. 基于XGBoost-LSTM组合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43(8): 75-81.
TAN H W, YANG Q L, XING J C, et al.Photovoltaic power prediction based on combined XGBoost-LSTM model[J]. Acta energiae solaris sinica, 2022, 43(8): 75-81.
[8] 刘倩, 胡强, 杨凌帆, 等. 基于时间序列的深度学习光伏发电模型研究[J]. 电力系统保护与控制, 2021, 49(19): 87-98.
LIU Q, HU Q, YANG L F, et al.Deep learning photovoltaic power generation model based on time series[J]. Power system protection and control, 2021, 49(19): 87-98.
[9] KENNEDY J, EBERHART R.Particle swarm optimization[C]// Proceedings of ICNN’95-International Conference on Neural Networks. Perth, WA, Australia, 2002: 1942-1948.
[10] MIRJALILI S, MIRJALILI S M, LEWIS A.Grey wolf optimizer[J]. Advances in engineering software, 2014, 69: 46-61.
[11] XUE J K, SHEN B.A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems science & control engineering, 2020, 8(1): 22-34.
[12] XIN W.Photovoltaic power prediction based on RBF neural network optimized by gray wolf algorithm[C]//2020 3rd International Conference on Control and Robots (ICCR). Tokyo, Japan, 2020: 226-230.
[13] 常东峰, 南新元. 基于混合麻雀算法改进反向传播神经网络的短期光伏功率预测[J]. 现代电力, 2022, 39(3): 287-298.
CHANG D F, NAN X Y.Short-term photovoltaic power prediction based on back propagation neural network improved by hybrid sparrow algorithm[J]. Modern electric power, 2022, 39(3): 287-298.
[14] ZHENG R N, LI G J, WANG K Y, et al.Short-term photovoltaic power prediction based on daily feature matrix and deep neural network[C]//2021 6th Asia Conference on Power and Electrical Engineering (ACPEE). Chongqing, China, 2021: 290-294.
[15] 徐一伦, 张彬桥, 黄婧, 等. 考虑天气类型和相似日的IWPA-LSSVM光伏发电功率预测[J]. 中国电力, 2023, 56(2): 143-149.
XU Y L, ZHANG B Q, HUANG J, et al.Forecast of photovoltaic power based on IWPA-LSSVM considering weather types and similar days[J]. Electric power, 2023, 56(2): 143-149.
[16] 吕伟杰, 方一帆, 程泽. 基于模糊C均值聚类和样本加权卷积神经网络的日前光伏出力预测研究[J]. 电网技术, 2022, 46(1): 231-238.
LYU W J, FANG Y F, CHENG Z.Prediction of day-ahead photovoltaic output based on FCM-WS-CNN[J]. Power system technology, 2022, 46(1): 231-238.

基金

国网浙江省电力有限公司科技项目(5211WZ220002)

PDF(1848 KB)

Accesses

Citation

Detail

段落导航
相关文章

/