提出一种考虑数据分解和进化捕食策略的双向长短期记忆网络(BiLSTM)短期光伏发电功率预测模型。首先,针对大量高频分量且频率成分复杂的原始光伏发电功率,通过数据分解理论,提出互补集合经验模态分解(CEEMD)与矩阵运算的奇异值分解(SVD)融合的(SVD-CEEMD-SVD, SCS)方法,实现光伏发电功率数据的二次降噪。然后,建立进化捕食策略(EPPS)和BiLSTM的组合预测模型,以更好地挖掘模型的内在特征,提升功率预测精度。最后,以山东某地区实际光伏电站为例,验证模型在滤除光伏发电功率噪声和提升预测精度方面的有效性。
Abstract
A short-term photovoltaic power prediction model based on bi-directional long short-term memory(BiLSTM) considering data decomposition and evolutionary predation strategy is proposed. Firstly, for a large number of high-frequency components and complex frequency components of the original PV power, the SCS method(SVD-CEEMD-SVD, SCS)is developed to fuse the complementary ensemble empirical modal decomposition(CEEMD)with the singular value decomposition(SVD)of matrix operations through the data decomposition theory, which can realize the secondary noise reduction of PV power data. In addition, a combined prediction model with evolutionary predation strategy(EPPS)and BiLSTM is established to better exploit the intrinsic features of the proposed model for improving the prediction accuracy. Finally, the effectiveness of the model in filtering out the PV power noise and improving the prediction accuracy is verified by taking an actual PV power plant in a region of Shandong as an example.
关键词
光伏发电 /
预测 /
奇异值分解 /
进化捕食策略 /
双向长短期记忆网络
Key words
photovoltaic power /
forecasting /
singular value decomposition /
evolutionary predation strategy /
bidirectional long short-term memory network
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘丹, 刘方, 许彦平. 基于MIV-PSO-BPNN的光伏出力短期预测[J]. 太阳能学报, 2022, 43(6): 94-98.
LIU D,LIU F,XU Y P.Short-term photovoltaic power forecasting based on MIV-PSO-BPNN model[J]. Acta energiae solaris sinica, 2022, 43(6): 94-98.
[2] 倪超, 王聪, 朱婷婷, 等. 基于CNN-Bi-LSTM的太阳辐照度超短期预测[J]. 太阳能学报, 2022, 43(3): 197-202.
NI C, WANG C, ZHU T T, et al.Super-short-term forecast of solar irradiance based on CNN-Bi-LSTM[J]. Acta energiae solaris sinica, 2022, 43(3): 197-202.
[3] 杨帆, 申亚, 李东东, 等. 基于GA-GNNM的极地光伏发电功率预测方法[J]. 太阳能学报, 2022, 43(4): 167-174.
YANG F, SHEN Y, LI D D, et al.Polar photovoltaic power forecasting method based on GA-GNNM[J]. Acta energiae solaris sinica, 2022, 43(4): 167-174.
[4] 吴峰, 王飞, 顾康慧, 等. 基于MEEMD-ARIMA模型的波浪能发电系统输出功率预测[J]. 电力系统自动化, 2021, 45(1): 65-70.
WU F, WANG F, GU K H, et al.Output power prediction of wave energy generation system based on modified ensemble empirical mode decomposition-autoregressive integrated moving average model[J]. Automation of electric power systems, 2021, 45(1): 65-70.
[5] 戚创创, 王向文. 考虑风向和大气稳定度的海上风电功率短期预测[J]. 电网技术, 2021, 45(7): 2773-2780.
QI C C, WANG X W.Short-term prediction of offshore wind power considering wind direction and atmospheric stability[J]. Power system technology, 2021, 45(7): 2773-2780.
[6] 王福忠, 王帅峰, 张丽. 基于VMD-LSTM与误差补偿的光伏发电超短期功率预测[J]. 太阳能学报, 2022, 43(8): 96-103.
WANG F Z, WANG S F, ZHANG L.Ultra short term power prediction of photovoltaic power generation based on VMD-LSTM and error compensation[J]. Acta energiae solaris sinica, 2022, 43(8): 96-103.
[7] 田翠霞, 黄敏, 朱启兵. 基于EMD-LMD-LSSVM联合模型的逐时太阳辐照度预测[J]. 太阳能学报, 2018, 39(2): 504-512.
TIAN C X, HUANG M, ZHU Q B.Hourly solar irradiance forecast based on EMD-LMD-LSSVM joint model[J]. Acta energiae solaris sinica, 2018, 39(2): 504-512.
[8] QIU X H, REN Y, SUGANTHAN P N, et al.Empirical mode decomposition based ensemble deep learning for load demand time series forecasting[J]. Applied soft computing, 2017, 54: 246-255.
[9] 王煜尘, 窦银科, 孟润泉. 基于模糊C均值聚类-变分模态分解和群智能优化的多核神经网络短期负荷预测模型[J]. 高电压技术, 2022, 48(4): 1308-1319.
WANG Y C, DOU Y K, MENG R Q.Forecasting model for multicore neural network short-term load based on fuzzy C-mean clustering-variational modal decomposition and chaotic swarm intelligence optimization[J]. High voltage engineering, 2022, 48(4): 1308-1319.
[10] 张振中, 郭傅傲, 刘大明, 等. 基于最大互信息系数和小波分解的多模型集成短期负荷预测[J]. 计算机应用与软件, 2021, 38(5): 82-87.
ZHANG Z Z, GUO F A, LIU D M, et al.Multi-model integrated short-term load prediction based on maximum mutual information coefficient and wavelet decomposition[J]. Computer applications and software, 2021, 38(5): 82-87.
[11] 张飞, 张志伟, 万乐斐, 等. 基于EEMD-GRNN方法的光伏电站短期出力预测[J]. 太阳能学报, 2020, 41(12): 103-109.
ZHANG F, ZHANG Z W, WAN L F, et al.Short-term output prediction of photovoltaic power station based on EEMD-GRNN method[J]. Acta energiae solaris sinica, 2020, 41(12): 103-109.
[12] 李玉志, 刘晓亮, 邢方方, 等. 基于Bi-LSTM和特征关联性分析的日尖峰负荷预测[J]. 电网技术, 2021, 45(7): 2719-2730.
LI Y Z, LIU X L, XING F F, et al.Daily peak load prediction based on correlation analysis and Bi-directional long short-term memory network[J]. Power system technology, 2021, 45(7): 2719-2730.
[13] JIAO P H, CHEN J J, QI B X, et al.Electricity price driven active distribution network planning considering uncertain wind power and electricity price[J]. International journal of electrical power & energy systems, 2019, 107: 422-437.
[14] JIAO P H, CHEN J J, CAI X, et al.Joint active and reactive for allocation of renewable energy and energy storage under uncertain coupling[J]. Applied energy, 2021, 302: 117582.
[15] CHEN J J, ZHUANG Y B, LI Y Z, et al.Risk-aware short term hydro-wind-thermal scheduling using a probability interval optimization model[J]. Applied energy, 2017, 189: 534-554.
基金
国家自然科学基金(51837007); 山东省重点研发计划(2019JZZY020804)