基于工况辨识的风电机组主传动系统运行状态监测

陈结, 陈换过, 肖志奇, 解超

太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 77-85.

PDF(4024 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4024 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 77-85. DOI: 10.19912/j.0254-0096.tynxb.2022-1545

基于工况辨识的风电机组主传动系统运行状态监测

  • 陈结1, 陈换过1, 肖志奇2, 解超1
作者信息 +

OPERATIONAL STATE MONITORING OF WIND TURBINE MAIN TRANSMISSION SYSTEM BASED ON WORKING CONDITION RECOGNITION

  • Chen Jie1, Chen Huanguo1, Xiao Zhiqi2, Xie Chao1
Author information +
文章历史 +

摘要

针对风电机组主传动系统运行工况复杂多变,导致状态监测系统误报警率高的问题,提出一种基于工况辨识的风电机组主传动系统运行状态监测方法。首先采用最大互信息系数(MIC)选取数据采集与监视控制系统(SCADA)特征参数,运用k-均值聚类算法对主传动系统运行工况进行划分,解决机组运行状态复杂多变导致运行工况不清的问题;接着提取状态监测系统(CMS)特征参数,并采用层次分析法计算CMS特征参量相对权重,提出主传动系统运行状态评价指标与量化算法;最后利用核密度估计(KDE)方法确定阈值,根据阈值与运行状态指标的关系实现主传动系统异常监测。将该方法运用于实际风场,结果表明所提方法监测结果与实际相符。

Abstract

Aiming at the problem of high false alarm rate of the condition monitoring system caused by complex and changeable operating conditions of the wind turbine main transmission system, a method for monitoring the operational state of the wind turbine main transmission system based on working condition recognition is proposed. Firstly, in order to solve the problem of unclear operating conditions due to complex and variable operational state of wind turbines, the SCADA feature parameters are selected by the maximal information coefficient (MIC), and the operating conditions of the main transmission system are classified by the k-means clustering algorithm. Then the CMS feature parameters are extracted, and the relative weights of CMS feature parameters are calculated by analytic hierarchy process (AHP), and the evaluation index and quantification algorithm of the main transmission system operating condition is proposed. Finally, the threshold value is determined using the kernel density estimation (KDE) method, and the abnormality monitoring of the main transmission system is realized according to the relationship between the threshold value and the operating condition index. The proposed method is applied to a wind farm, and the experimental results show that the monitoring results are consistent with the actual situation.

关键词

风电机组 / 状态监测 / 数据采集与监视控制系统 / 状态监测系统 / 工况划分

Key words

wind turbine / condition monitoring / supervisory control and data acquisition (SCADA) system / condition monitoring system (CMS) / condition classification

引用本文

导出引用
陈结, 陈换过, 肖志奇, 解超. 基于工况辨识的风电机组主传动系统运行状态监测[J]. 太阳能学报. 2024, 45(2): 77-85 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1545
Chen Jie, Chen Huanguo, Xiao Zhiqi, Xie Chao. OPERATIONAL STATE MONITORING OF WIND TURBINE MAIN TRANSMISSION SYSTEM BASED ON WORKING CONDITION RECOGNITION[J]. Acta Energiae Solaris Sinica. 2024, 45(2): 77-85 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1545
中图分类号: TH17   

参考文献

[1] CHU S, MAJUMDAR A.Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488: 294-303.
[2] WANG T Y, HAN Q K, CHU F L, et al.Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: a review[J]. Mechanical systems and signal processing, 2019, 126: 662-685.
[3] SUN H Y, QIU C Y, LU L, et al.Wind turbine power modelling and optimization using artificial neural network with wind field experimental data[J]. Applied energy, 2020, 280: 115880.
[4] PINAR PÉREZ J M, GARCÍA MÁRQUEZ F P, TOBIAS A, et al. Wind turbine reliability analysis[J]. Renewable and sustainable energy reviews, 2013, 23: 463-472.
[5] CHEN H G, XIE C, DAI J C, et al.SCADA data-based working condition classification for condition assessment of wind turbine main transmission system[J]. Energies, 2021, 14(21): 7043.
[6] 陈雪峰, 郭艳婕, 许才彬, 等. 风电装备故障诊断与健康监测研究综述[J]. 中国机械工程, 2020, 31(2): 175-189.
CHEN X F, GUO Y J, XU C B, et al.Review of fault diagnosis and health monitoring for wind power equipment[J]. China mechanical engineering, 2020, 31(2): 175-189.
[7] 马良玉, 孙佳明, 於世磊, 等. 基于DBSCAN和SDAE的风电机组异常工况预警研究[J]. 动力工程学报, 2021, 41(9): 786-793, 808.
MA L Y, SUN J M, YU S L, et al.DBSCAN and SDAE-based abnormal condition early warning for a wind turbine unit[J]. Journal of Chinese Society of Power Engineering, 2021, 41(9): 786-793, 808.
[8] CHEN H S, LIU H, CHU X N, et al.Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network[J]. Renewable energy, 2021, 172: 829-840.
[9] 齐咏生, 景彤梅, 高学金, 等. 基于多维度SCADA参数的风电机组异常辨识[J]. 控制工程, 2021, 28(12): 2393-2401.
QI Y S, JING T M, GAO X J, et al.Wind turbine anomaly identification based on multi-dimensional SCADA parameters[J]. Control engineering of China, 2021, 28(12): 2393-2401.
[10] 马然, 栗文义, 齐咏生. 基于风功率数据的风电机组性能预测与健康状态评估[J]. 可再生能源, 2019, 37(8): 1252-1259.
MA R, LI W Y, QI Y S.Performance degradation prognostic and health assessment using wind power data for wind turbine generation unit[J]. Renewable energy resources, 2019, 37(8): 1252-1259.
[11] 王印松, 石建涛. 基于深度神经网络模型的风电机组传动系统状态监测方法[J]. 电力科学与工程, 2021, 37(9): 26-34.
WANG Y S, SHI J T.Condition monitoring method of wind turbine transmission system based on DNN model[J]. Electric power science and engineering, 2021, 37(9): 26-34.
[12] 向玲, 王朋鹤, 李京蓄. 基于CNN-LSTM的风电机组异常状态检测[J]. 振动与冲击, 2021, 40(22): 11-17.
XIANG L, WANG P H, LI J X.Abnormal state detection of wind turbines based on CNN-LSTM[J]. Journal of vibration and shock, 2021, 40(22): 11-17.
[13] 李振恩, 张新燕, 胡威, 等. 基于健康指数的风电机组高速轴轴承状态评估与预测[J]. 太阳能学报, 2021, 42(10): 290-297.
LI Z E, ZHANG X Y, HU W, et al.State accessment and prediction of wind turbine high speed shaft bearing based on health index[J]. Acta energiae solaris sinica, 2021, 42(10): 290-297.
[14] PAN Y B, HONG R J, CHEN J, et al.Performance degradation assessment of a wind turbine gearbox based on multi-sensor data fusion[J]. Mechanism and machine theory, 2019, 137: 509-526.
[15] 陈换过, 解超, 戴巨川, 等. 一种风电机组主传动系统的运行工况划分方法及系统: CN113339207B[P].2023-05-26.
CHEN H G, XIE C, DAI J C, et al. Method and system for dividing operation conditions of main transmission system of wind turbine generator system: CN113339207B[P].2023-05-26.
[16] 雷亚国, 何正嘉, 訾艳阳. 基于混合智能新模型的故障诊断[J]. 机械工程学报, 2008, 44(7): 112-117.
LEI Y G, HE Z J, ZI Y Y.Fault diagnosis based on novel hybrid intelligent model[J]. Chinese journal of mechanical engineering, 2008, 44(7): 112-117.
[17] 董正. 基于AdaBoostRVM的滚动轴承剩余寿命预测方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2018.
DONG Z.Research on remaining useful life prediction method of a rolling bearing based on AdaBoostRVM[D]. Harbin: Harbin University of Science and Technology, 2018.
[18] HUANG X S, ZHONG M Q, LI Y, et al.Research on comprehensive performance evaluation technology of wind turbine based on analytic hierarchy process[J]. IOP conference series: earth and environmental science, 2018, 153(4): 042024.
[19] 戴巨川, 曹俊伟, 张帆, 等. 风电场SCADA数据预处理方法及评价策略[J]. 太阳能学报, 2017, 38(9): 2597-2604.
DAI J C, CAO J W, ZHANG F, et al.Data pre-processing method and its evaluation strategy of SCADA data from wind farm[J]. Acta energiae solaris sinica, 2017, 38(9): 2597-2604.
[20] 张帆, 刘德顺, 戴巨川, 等. 一种基于SCADA参数关系的风电机组运行状态识别方法[J]. 机械工程学报, 2019, 55(4): 1-9.
ZHANG F, LIU D S, DAI J C, et al.An operating condition recognition method of wind turbine based on SCADA parameter relations[J]. Journal of mechanical engineering, 2019, 55(4): 1-9.

基金

国家自然科学基金(51975535)

PDF(4024 KB)

Accesses

Citation

Detail

段落导航
相关文章

/