通过开展砂土中等幅值和变幅值循环加载模型试验,针对空心锥形基础累积位移、转角和水平刚度进行研究。等幅值加载过程中,空心锥形基础沿加载方向减速移动,最终达到稳定状态;基础尺寸和荷载幅值对累积水平位移和转角影响显著,当荷载幅值δb为0.2和0.5时,位移量和倾角随底板直径的增大而增大,而当δb为0.8时,位移量和倾角随底板直径的增大先减小后增大;当δb为0.2、0.5和0.8时,水平刚度随底板直径的增大分别降低39%、59.7%、43.9%。变幅值加载过程中,空心锥形基础在幅值逐级增加时沿加载方向加速移动,水平刚度随基础底板直径的增大先增大后减小,在幅值逐级递减时沿加载方向减速移动,水平刚度随基础底板直径的增大先减小后增大;位移量和倾角在幅值逐级递增时最大,逐级递减次之,等幅值加载最小。通过对无量纲化累积转角拟合,提出等幅值累积转角计算公式,经验证,计算公式与模型试验结果吻合较好。
Abstract
The hollow cone-shaped foundation is a novel onshore wind turbine foundation, which has higher cyclic lateral bearing capacity than the traditional circular gravity-based foundation. A series of lateral cyclic loading tests are carried out to investigate the cyclic bearing behaviors of the hollow cone-shaped foundation with different base plate diameters. The constant-amplitude cyclic loading tests show that the accumulated displacement gradually increases along the loading direction as the number of cycles loading increases, and finally reaches a stable state. The accumulated displacement and rotation angle increase with the increasing the base plate diameter when the load amplitude δb and 0.5, but firstly increases and then decreases when the load amplitude δb. For the cyclic amplitude δb, 0.5, and 0.8, the cyclic stiffness of the hollow cone-shaped foundation decreases by 39%, 59.7%, and 43.9% with the increasing of the base plate diameter, respectively. The variable-amplitude cyclic loading tests show that the accumulated displacement sharply increases along the loading direction, and the cyclic stiffness first increases and then decreases as the load amplitude increases. On the contrary, there is an opposite variation trend as the load amplitude decreases. The formula of calculating the rotation angle of the hollow cone-shaped foundation under constant amplitude cyclic loads is proposed, and the results by using this formula agree well with the model test.
关键词
陆地风电场 /
基础 /
循环荷载 /
等幅值循环 /
变幅值循环 /
累积位移
Key words
onshore wind farms /
foundations /
cyclic loads /
constant-amplitude cyclic loading /
variable-amplitude cyclic loading /
cumulative displacement
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李大勇, 翟汉波, 张雨坤, 等. 钢筋混凝土空心锥体山区风电柔性基础及其施工方法: CN104372806B[P].2015-12-09.
LI D Y, ZHAI H B, ZHANG Y K, et al. Mountain area reinforced concrete hollow-cone flexible wind power foundation and construction method thereof: CN104372806B[P].2015-12-09.
[2] 李珊珊, 李大勇. 废旧轮胎橡胶颗粒与黏土混合土的剪切特性[J]. 长江科学院院报, 2017, 34(7): 99-105.
LI S S, LI D Y.Shearing properties of composite soil mixing clay with rubber particle of scrap tire[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(7): 99-105.
[3] LI D Y, LI S S, ZHANG Y K.Cone-shaped hollow flexible reinforced concrete foundation (CHFRF)-Innovative for mountain wind turbines[J]. Soils and foundations, 2019, 59(5): 1172-1181.
[4] LI S S, ZHANG Y K, LI D Y, et al.Capacity of cone-shaped hollow flexible reinforced concrete foundation (CHFRF) in sand under horizontal loading[J]. Advances in materials science and engineering, 2020(2): 1-14.
[5] LEBLANC C, HOULSBY G T, BYRNE B W.Response of stiff piles in sand to long-term cyclic lateral loading[J]. Géotechnique, 2010, 60(2): 79-90.
[6] ROSQUOËT F, THOREL L, GARNIER J, et al. Lateral cyclic loading of sand-installed piles[J]. Soils and foundations, 2007, 47(5): 821-832.
[7] KOHAN O, BIENEN B, GAUDIN C, et al.The effect of water jetting on spudcan extraction from deep embedment in soft clay[J]. Ocean engineering, 2015, 97: 90-99.
[8] 程星磊, 王建华, 王哲学. 软黏土中吸力锚循环失稳过程的模型试验[J]. 岩土力学, 2018, 39(9): 3285-3293.
CHENG X L, WANG J H, WANG Z X.Model experiment on cyclic instability process of suction anchors in soft clays[J]. Rock and soil mechanics, 2018, 39(9): 3285-3293.
[9] 冯凌云, 李大勇. 砂土中裙式吸力基础水平循环承载特性的影响因素分析[J]. 工程科学与技术, 2018, 50(6): 156-164.
FENG L Y, LI D Y.Analysis of influence factors on cyclic bearing behaviors of skirted suction caissons[J]. Advanced engineering sciences, 2018, 50(6): 156-164.
[10] 丁红岩, 王旭月, 张浦阳, 等. 砂土中宽浅式复合筒型基础刚度退化试验研究[J]. 太阳能学报, 2020, 41(3): 34-44.
DING H Y, WANG X Y, ZHANG P Y, et al.Experimental study on stiffness degradation of wide-shallow bucket foundation in sand[J]. Acta energiae solaris sinica, 2020, 41(3): 34-44.
[11] 罗仑博, 王媛, 黄景琦, 等. 海洋循环荷载对吸力桶基础水平承载力的影响研究[J]. 太阳能学报, 2021, 42(3): 142-147.
LUO L B, WANG Y, HUANG J Q, et al.Study on effects of cyclic loading on lateral capacity of suction bucket foundations[J]. Acta energiae solaris sinica, 2021, 42(3): 142-147.
[12] 朱斌, 应盼盼, 邢月龙. 软土中吸力式桶形基础倾覆承载性能离心模型试验[J]. 岩土力学, 2015, 36(S1): 247-252.
ZHU B, YING P P, XING Y L.Centrifuge model test on suction caisson foundation in soft clay subjected to lateral loads[J]. Rock and soil mechanics, 2015, 36(S1): 247-252.
[13] 李大勇, 张景睿, 张雨坤, 等. 饱和砂土中裙式吸力基础水平循环特性和累积转角变化规律[J]. 岩土力学,2021, 42(3): 611-619.
LI D Y, ZHANG J R, ZHANG Y K, et al.Bearing behavior and accumulated rotation of modified suction caisson(MSC) in saturated sand under cyclic loading[J]. Rock and soil mechanics, 2021, 42(3): 611-619.
[14] 李珊珊. 山区风电钢筋混凝土空心锥形柔性基础承载特性[D]. 青岛: 山东科技大学, 2018.
LI S S.Bearing behavior of cone-shaped hollow flexible reinforced concrete foundation for mountain wind turbines[D]. Qingdao: Shandong University of Science and Technology, 2018.
[15] LI S S, ZHANG Y K, LI D Y, et al.Lateral bearing capacity of cone-shaped hollow foundation by using limit equilibrium method[J]. International journal of physical modelling in geotechnics, 2022, 22(3): 157-168.
[16] 张琦, 彭志科, 寇雨丰, 等. 海洋工程试验的浮式风力发电机模型设计[J]. 实验室研究与探索, 2019, 38(6): 9-12, 17.
ZHANG Q, PENG Z K, KOU Y F, et al.Model design of floating offshore wind turbine and application in ocean engineering tests[J]. Research and exploration in laboratory, 2019, 38(6): 9-12, 17.
[17] 张玉, 李大勇, 梁昊, 等. 风电空心锥形基础水平承载特性及土压力分布规律模型试验研究[J]. 岩土力学, 2021, 42(5): 1404-1412.
ZHANG Y, LI D Y, LIANG H, et al.Model tests on horizontal bearing capacity and earth pressure distribution of hollow cone-shaped foundation under horizontal monotonic loading[J]. Rock and soil mechanics, 2021, 42(5): 1404-1412.
[18] LI D Y, FENG L Y, ZHANG Y K.Model tests of modified suction caissons in marine sand under monotonic lateral combined loading[J]. Applied ocean research, 2014, 48: 137-147.
[19] ZHU B, BYRNE B W, HOULSBY G T.Long-term lateral cyclic response of suction caisson foundations in sand[J]. Journal of geotechnical and geoenvironmental engineering, 2013, 139(1): 73-83.
[20] KELLY R B, HOULSBY G T, BYRNE B W.A comparison of field and laboratory tests of caisson foundations in sand and clay[J]. Géotechnique, 2006, 56(9): 617-626.
[21] ZHANG Y K, LI D Y, GAO Y F.Earth pressures on modified suction caisson in saturated sand under monotonic lateral loading[J]. Journal of renewable and sustainable energy, 2016, 8(5): 053312.
[22] 张宏博. 长期往复荷载作用下无粘性材料累积变形研究[D]. 上海: 同济大学, 2006.
ZHANG H B.Long term cumulative deformation of cohesionless material induced by repeated loading[D]. Shanghai: Tongji University, 2006.
[23] BAI Y, LI D Y, ZHANG Y K.Accumulated rotation of a modified suction caisson and soil deformation induced by cyclic loading[J]. China ocean engineering, 2020, 34(3): 441-449.
基金
山东省自然科学基金青年基金(ZR2022QE029); 自主创新科研计划(理工科)-青年基金(22CX06021A); 青岛市博士后资助项目(ZX20220202); 山东科技大学科研创新团队项目(2015TDJH104)