太阳能-地源热泵系统控制策略及运行特性研究

孙畅, 张磊, 张广宇, 鞠晓磊, 鲁永飞

太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 95-101.

PDF(2287 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2287 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 95-101. DOI: 10.19912/j.0254-0096.tynxb.2022-1548

太阳能-地源热泵系统控制策略及运行特性研究

  • 孙畅, 张磊, 张广宇, 鞠晓磊, 鲁永飞
作者信息 +

STUDY ON CONTROL STRATEGY AND OPERATION CHARACTERISTICS OF SOLAR-GROUND SOURCE HEAT PUMP SYSTEM

  • Sun Chang, Zhang Lei, Zhang Guangyu, Ju Xiaolei, Lu Yongfei
Author information +
文章历史 +

摘要

为解决西北村镇地源热泵系统应用中土壤温度逐年降低的问题,设置太阳能-地源热泵系统(SGSHP),分析SGSHP的适用区域。以某小学为测算对象,使用文献调研、数字化模拟等方法,仿真模拟运行策略。结果表明,农业设施和学校适合采用SGSHP,非供暖季太阳能为土壤补热,供暖季优先太阳能供暖为最佳控制策略,太阳能集热器面积86 m2,水箱容积3.9 m3,换热器截面积0.4 m2,循环泵流量6.6 m3/h,换热管长度120 m,可在1个自然年恢复土壤温度。

Abstract

In order to solve the problem of soil temperature decreasing year by year in the application of ground source heat pump system in China Northwest villages and towns, a solar assisted system is added, and the control strategy of the solar-ground source heat pump system (SGSHP) is setup, and the applicable areas of SGSHP are analyzed. Taking a primary school as the measurement object, literature research and digital simulation are used to propose and simulate operation strategy. The results show that SGSHP is suitable for agricultural facilities and schools. The optimal control strategy is that solar energy heats soil in non-heating seasons and solar heating is preferred in heating seasons. The optimized area of solar collector is 86 m2, and the volume of water tank is 3.9 m3. The sectional area of heat exchanger is 0.4 m2, and the flow of circulating pump is 6.6 m3/h. The heat exchange tube is 120 m long, and the soil temperature can be restored in a natural year.

关键词

地热能供暖 / 控制策略 / TRNSYS仿真 / 太阳能供暖 / 地源热泵

Key words

geothermal energy heating / control strategy / TRNSYS simulation / solar energy heating / ground source heat pump

引用本文

导出引用
孙畅, 张磊, 张广宇, 鞠晓磊, 鲁永飞. 太阳能-地源热泵系统控制策略及运行特性研究[J]. 太阳能学报. 2024, 45(1): 95-101 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1548
Sun Chang, Zhang Lei, Zhang Guangyu, Ju Xiaolei, Lu Yongfei. STUDY ON CONTROL STRATEGY AND OPERATION CHARACTERISTICS OF SOLAR-GROUND SOURCE HEAT PUMP SYSTEM[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 95-101 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1548
中图分类号: TK615    TM614   

参考文献

[1] 王贵玲. 中国主要城市浅层地热能调查评价[M]. 北京: 科学出版社, 2019: 87-95, 118-120.
WANG G L.Investigation and evaluation of shallow geothermal energy in major cities of China[M]. Beijing: Science Press, 2019: 87-95, 118-120.
[2] 金光, 张宏葛, 郭少朋,等. 内蒙古地区太阳能-地源热泵系统运行特性研究[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(5): 751-756.
JIN G, ZHANG H G, GUO S P, et al.Study on theoperation characteristics of solar energy-ground source heat pump system in Inner Mongolia[J]. Journal of Xi'an University of Architecture & Technology (natural science edition), 2019, 51(5): 751-756.
[3] OZGENER W O, HEPBASLI A.A parametrical study on the energetic and exergetic assessment of a solar-assisted vertical ground-source heat pump system used for heating a greenhouse[J]. Building & environment, 2007, 42(1): 11-24.
[4] RAD F M, FUNG A S, ROSEN M A.An integrated model for designing a solar community heating system with borehole thermal storage[J]. Energy for sustainable development, 2017, 36: 6-15.
[5] KORONEOS C J, NANAKI E A.Environmental impact assessment of a ground source heat pump system in Greece[J]. Geothermics, 2017, 65: 1-9.
[6] 朱家玲, 赵静, 张伟. 太阳能-土壤源耦合蓄热特性及潜力分析[J]. 太阳能学报, 2011, 32(3): 390-394.
ZHU J L, ZHAO J, ZHANG W.The analysis of characteristics and potential on solar-ground coupling heat accumulation system[J]. Acta energiae solaris sinica, 2011, 32(3): 390-394.
[7] 金光, 陈正浩, 郭少朋, 等. 内蒙古地区太阳能-地源热泵系统供暖可行性研究[J]. 太阳能学报, 2021, 42(4): 334-341.
JIN G, CHEN Z H, GUO S P, et al.Feasibility analysis of heating with solar energy-ground source heat pump system in Inner Mongolian areas[J]. Acta energiae solaris sinica, 2021, 42(4): 334-341.
[8] KJELLSSON E.Optimization of systems with the combination of ground-source heat pump and solar collectors in dwellings[J]. Energy, 2010, 35(6): 2667-2673.
[9] EMMI G, ZARRELLA A, CARLI M D, et al.An analysis of solar assisted ground source heat pumps in cold climates[J]. Energy conversion & management, 2015, 106: 660-675.
[10] 季永明, 端木琳. 太阳能辅助地埋管地源热泵复合系统过渡季运行模式[J]. 暖通空调, 2017, 47(10): 127-131.
JI Y M, DUANMU L.Operation modes of solar-assisted ground source heat pump system in transition season[J]. Heating ventilating & air conditioning, 2017, 47(10): 127-131.
[11] GB 50736—2012, 民用建筑供暖通风与空气调节设计规范[S].
GB 50736—2012, Design code for heating ventilation and air conditioning of civil buildings[S].
[12] 杨小利, 王劲松. 西北地区季节性最大冻土深度的分布和变化特征[J]. 土壤通报, 2008, 39(2): 238-243.
YANG X L, WANG J S.The change characteristics of maximum frozen soil depth of seasonal frozen soil in Northweat China[J]. Chinese journal of soil science, 2008, 39(2): 238-243.
[13] 张磊, 白玉锋, 刘炜. 天水浅层岩土热物性测试实验研究[J]. 中国科技信息, 2020, 633(15): 67-68, 70.
ZHANG L, BAI Y F, LIU W.Experimental study on thermophysical properties of shallow rock and soil in Tianshui[J]. China science and technology information, 2020, 633(15): 67-68, 70.
[14] GB 50495—2019, 太阳能供热采暖工程技术标准[S].
GB 50495—2019, Technical code for solar heating system[S].
[15] 孙畅. 大连市某既有公建冷冻站改造策略研究[D]. 大连: 大连理工大学, 2018.
SUN C.Study on the reconstruction strategy of an existing public building chilled station in Dalian[D]. Dalian: Dalian University of Technology, 2018.

基金

国家重点研发计划(2020YFD1100505-03)

PDF(2287 KB)

Accesses

Citation

Detail

段落导航
相关文章

/