平衡大气边界层理论在复杂地形风场模拟中的应用

马国林, 田琳琳, 宋翌蕾, 赵宁

太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 315-325.

PDF(11459 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(11459 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 315-325. DOI: 10.19912/j.0254-0096.tynxb.2022-1550

平衡大气边界层理论在复杂地形风场模拟中的应用

  • 马国林, 田琳琳, 宋翌蕾, 赵宁
作者信息 +

APPLICATION OF EQUILIBRIUM ATMOSPHERIC BOUNDARY LAYER THEORY TO SIMULATION OF WIND FIELDS IN COMPLEX TERRAIN

  • Ma Guolin, Tian Linlin, Song Yilei, Zhao Ning
Author information +
文章历史 +

摘要

针对大气边界层数值模拟时入口湍动能及耗散率在下游持续衰减的问题,基于标准k-ε模型及其改进模型研究不同湍流黏性更新方法对平衡大气边界层自保持性的影响,然后采用平衡大气边界层自保持性方法结合建筑绕流影响区(BIA)问题解决方法对Askervein山绕流问题进行模拟研究,最后基于数值模拟结果,分析复杂地形绕流对风力机选址的影响。结果表明,选择合适的湍流黏性更新方法、粗糙度处理方法、湍动能和耗散率方程源项可使出口处的流动参数与入口处给定初值保持较高的一致性;BIA问题解决方法的引入可进一步提高复杂地形绕流模拟精度;风力机宜安装在山顶,避开湍流度较大的山体背风区,山后风力机的排布应结合山顶风力机尾流和山体影响区域综合考量。

Abstract

There is a decay phenomenon that the value of turbulent kinetic energy in the outlet is inconsistent with that given in the inlet when simulating the atmosphere boundary layer with the standard k-ε turbulence model. This paper uses different turbulent viscosity updating methods to research the sustainability of the equilibrium atmosphere boundary layer, then selects the better sustainable equilibrium atmosphere boundary layer methods combined with the solution of the BIA problem to simulate the wind flow over complex terrain, and finally based on the numerical simulation results, the effect of wind flow over complex terrain on wind turbine siting is analyzed. The results show that the wind profile at the outlet, the turbulent kinetic energy, and the dissipation rate can keep a high consistency with the given initial values at the inlet by selecting appropriate turbulent viscosity updating methods, roughness treatment methods, and the source terms of turbulent kinetic energy and dissipation rate. The introduction of the BIA problem-solving method can further improve the accuracy of numerical simulation of complex terrain. The wind turbines are preferably installed at the top of the mountain, avoiding the leeward area of the mountain with large turbulence, and the layout of wind turbines behind the mountain should be considered in combination with the wind turbine wake at the top of the mountain and the influence area of the mountain.

关键词

大气边界层 / k-ε湍流模型 / 复杂地形 / 数值模拟 / 微观选址

Key words

atmosphere boundary layer / k-ε turbulence model / complex terrain / numerical simulation / micro siting

引用本文

导出引用
马国林, 田琳琳, 宋翌蕾, 赵宁. 平衡大气边界层理论在复杂地形风场模拟中的应用[J]. 太阳能学报. 2024, 45(1): 315-325 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1550
Ma Guolin, Tian Linlin, Song Yilei, Zhao Ning. APPLICATION OF EQUILIBRIUM ATMOSPHERIC BOUNDARY LAYER THEORY TO SIMULATION OF WIND FIELDS IN COMPLEX TERRAIN[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 315-325 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1550
中图分类号: TK81   

参考文献

[1] RICHARDS P J, HOXEY R P. Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model[J]. Journal of wind engineering and industrial aerodynamics, 1993, 46/47: 145-153.
[2] RICHARDS P J, NORRIS S E.Appropriate boundary conditions for computational wind engineering models revisited[J]. Journal of wind engineering and industrial aerodynamics, 2011, 99(4): 257-266.
[3] POPE S B.Turbulent flows[M]. Cambridge: Cambridge University Press, 2000: 83-263.
[4] SPALART P R, RUMSEY C L.Effective inflow conditions for turbulence models in aerodynamic calculations[J]. AIAA journal, 2007, 45(10): 2544-2553.
[5] SARKAR D, SAVORY E.Numerical modeling of freestream turbulence decay using different commercial computational fluid dynamics codes[J]. Journal of fluids engineering, 2021, 143(4): 041503.
[6] YANG Y, GU M, CHEN S Q, et al.New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering[J]. Journal of wind engineering and industrial aerodynamics, 2009, 97(2): 88-95.
[7] PARENTE A, GORLÉ C, BEECK J, et al.A comprehensive modelling approach for the neutral atmospheric boundary layer: consistent inflow conditions, wall function and turbulence model[J]. Boundary-layer meteorology, 2011, 140(3): 411-428.
[8] BALOGH M, PARENTE A.Realistic boundary conditions for the simulation of atmospheric boundary layer flows using an improved k-ε model[J]. Journal of wind engineering and industrial aerodynamics, 2015, 144: 183-190.
[9] PARENTE A, GORLÉ C, VAN BEECK J, et al.Improved k-ε model and wall function formulation for the RANS simulation of ABL flows[J]. Journal of wind engineering and industrial aerodynamics, 2011, 99(4): 267-278.
[10] PONTIGGIA M, DERUDI M, BUSINI V, et al.Hazardous gas dispersion: a CFD model accounting for atmospheric stability classes[J]. Journal of hazardous materials, 2009, 171(1/2/3): 739-747.
[11] BALOGH M, PARENTE A, BENOCCI C. RANS simulation of ABL flow over complex terrains applying an Enhanced k-ε model and wall function formulation: implementation and comparison for fluent and OpenFOAM[J]. Journal of wind engineering and industrial aerodynamics, 2012, 104/105/106: 360-368.
[12] YAN B W, LI Q S, HE Y C, et al.RANS simulation of neutral atmospheric boundary layer flows over complex terrain by proper imposition of boundary conditions and modification on the k-ε model[J]. Environmental fluid mechanics, 2016, 16(1): 1-23.
[13] BLOCKEN B, STATHOPOULOS T, CARMELIET J.CFD simulation of the atmospheric boundary layer: wall function problems[J]. Atmospheric environment, 2007, 41(2): 238-252.
[14] HARGREAVES D M, WRIGHT N G.On the use of the k model in commercial CFD software to model the neutral atmospheric boundary layer[J]. Journal of wind engineering and industrial aerodynamics, 2007, 95(5): 355-369.
[15] LI C, WANG J H, HU G, et al.RANS simulation of horizontal homogeneous atmospheric boundary layer over rough terrains by an enriched canopy drag model[J]. Journal of wind engineering and industrial aerodynamics, 2020, 206: 104281.
[16] LONGO R, FERRAROTTI M, SÁNCHEZ C G, et al. Advanced turbulence models and boundary conditions for flows around different configurations of ground-mounted buildings[J]. Journal of wind engineering and industrial aerodynamics, 2017, 167: 160-182.
[17] LONGO R, NICASTRO P, NATALINI M, et al.Impact of urban environment on Savonius wind turbine performance: a numerical perspective[J]. Renewable energy, 2020, 156: 407-422.
[18] 李林敏, 杨青, 潘航平. 动态风工况下复杂地形风电场流场多尺度仿真[J]. 太阳能学报, 2022, 43(11): 179-185.
LI L M, YANG Q, PAN H P.Multiscale flow simulation of complex terrain wind farm under unsteady wind[J]. Acta energiae solaris sinica, 2022, 43(11): 179-185.
[19] 叶昭良, 闫姝, 史绍平, 等. 基于Openfoam的怀来复杂地形风电场流动特性研究[J]. 可再生能源, 2020, 38(4): 471-476.
YE Z L, YAN S, SHI S P, et al.Research on Huailai complex wind farm terrain flow characteristics based on Openfoam[J]. Renewable energy resources, 2020, 38(4): 471-476.
[20] 左薇, 李惠民, 芮晓明, 等. 风电场典型复杂地形的数值模拟研究[J]. 太阳能学报, 2018, 39(11): 3202-3208.
ZUO W, LI H M, RUI X M, et al.Numerical simulation of typical complex terrain of wind farms[J]. Acta energiae solaris sinica, 2018, 39(11): 3202-3208.
[21] RADÜNZ W C, MATTUELLA J M L, PETRY A P. Wind resource mapping and energy estimation in complex terrain: a framework based on field observations and computational fluid dynamics[J]. Renewable energy, 2020, 152: 494-515.
[22] TEMEL O, BRICTEUX L, VAN BEECK J.Coupled WRF-OpenFOAM study of wind flow over complex terrain[J]. Journal of wind engineering and industrial aerodynamics, 2018, 174: 152-169.
[23] LAUNDER B E, SPALDING D B.Lectures in mathematical models of turbulence[M]. London, New York: Academic Press, 1972: 358-426.
[24] ANSYS. ANSYS fluent user's guide[M]. Canonsburg, PA: ANSYS Inc, 2019: 1355-1360.
[25] BERANEK W J.General rules for the determination of wind environment[C]//Proceedings of the 5th International Conference on Wind Engineering, Colorado, USA, 1979.
[26] BALOGH M.Numerical simulation of atmospheric flows using general purpose CFD solvers[D]. Budapest: Budapest University of Technology and Economics, 2015.
[27] TAYLOR P, TEUNISSEN H W. Askervein'82: report on the September/October1982 experiment to study boundary layer flow over Askervein, South Uist[R]. Technical Report MSRS-83-8, 1983.
[28] TAYLOR P, TEUNISSEN H W. The Askervein Hill Project: report on the September/October1983, main field experiment[R]. Technical Report MSRS-84-6, 1985.
[29] LIU L Q, RICHARD J A M. Effects of two-dimensional steep hills on the performance of wind turbines and wind farms[J]. Boundary layer meteorology, 2020, 176(2): 251-269.
[30] WU K L, PORTÉ-AGEL F.Flow adjustment inside and around large finite-size wind farms[J]. Energies, 2017, 10(12): 2164.

基金

国家重点研发计划(2019YFE0192600); 中央高校基本科研业务费专项资金资助(NS2022010)

PDF(11459 KB)

Accesses

Citation

Detail

段落导航
相关文章

/