液氢储运技术发展现状与展望

王鑫, 陈叔平, 朱鸣

太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 500-514.

PDF(3255 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3255 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 500-514. DOI: 10.19912/j.0254-0096.tynxb.2022-1559

液氢储运技术发展现状与展望

  • 王鑫1, 陈叔平1, 朱鸣2
作者信息 +

DEVELOPMENT STATUS AND PROSPECT OF LIQUID HYDROGEN STORAGE AND TRANSPORTATION TECHNOLOGY

  • Wang Xin1, Chen Shuping1, Zhu Ming2
Author information +
文章历史 +

摘要

液氢具有储运密度大、能量密度高的特点,应用前景广阔,受限于液氢的物理特性,低温储运技术制约了液氢大规模应用。该文对当前国内外固定及移动式液氢储存设备进行调研,针对目前所面临的技术难点,从储氢材料、低温绝热、热力特性、配套设备、标准体系等方面总结液氢储运环节的关键技术,分析液氢储运现状与发展趋势,提出未来液氢储运技术重点发展方向,能有力促进中国高性能液氢储运设备研发,保障未来液氢规模化安全使用。

Abstract

Liquid hydrogen has the characteristics of high storage density and energy. However, limited by the physical properties of liquid hydrogen, its storage and transportation technologies restrict its large-scale application. In this paper, the fixed and mobile liquid hydrogen storage equipment worldwide in recent years have been investigated. Aiming at the current technical challenges, the critical technologies of liquid hydrogen storage and transportation are summarized in terms of hydrogen storage materials, low-temperature insulation, fluid thermodynamic features, supporting equipment and standard system, etc. The current situation and the development trend of liquid hydrogen storage and transportation are analyzed. And the major development direction of liquid hydrogen storage and transportation technology in the future is proposed, which will effectively promote the research and development of high-performance liquid hydrogen storage and transportation equipment in China and ensure the safe use of liquid hydrogen on a large scale in the future.

关键词

液氢 / 储运技术 / 低温绝热 / 储氢容器 / 结构设计

Key words

liquid hydrogen / storage and transportation technology / low temperature insulation / hydrogen storage container / structural design

引用本文

导出引用
王鑫, 陈叔平, 朱鸣. 液氢储运技术发展现状与展望[J]. 太阳能学报. 2024, 45(1): 500-514 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1559
Wang Xin, Chen Shuping, Zhu Ming. DEVELOPMENT STATUS AND PROSPECT OF LIQUID HYDROGEN STORAGE AND TRANSPORTATION TECHNOLOGY[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 500-514 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1559
中图分类号: TK91   

参考文献

[1] 徐硕, 余碧莹. 中国氢能技术发展现状与未来展望[J]. 北京理工大学学报(社会科学版), 2021, 23(6): 1-12.
XU S, YU B Y.Current development and prospect of hydrogen energy technology in China[J]. Journal of Beijing Institute of Technology(social sciences edition), 2021, 23(6): 1-12.
[2] REN L, ZHOU S, OU X M.Life-cycle energy consumption and greenhouse-gas emissions of hydrogen supply chains for fuel-cell vehicles in China[J]. Energy, 2020, 209: 118482.
[3] RATNAKAR R R, GUPTA N, ZHANG K, et al.Hydrogen supply chain and challenges in large-scale LH2 storage and transportation[J]. International journal of hydrogen energy, 2021, 46(47): 24149-24168.
[4] 邹才能, 李建明, 张茜, 等. 氢能工业现状、技术进展、挑战及前景[J]. 天然气工业, 2022, 42(4): 1-20.
ZOU C N, LI J M, ZHANG X, et al.Industrial status, technological progress, challenges and prospects of hydrogen energy[J]. Natural gas industry, 2022, 42(4): 1-20.
[5] 郑津洋, 马凯, 叶盛, 等. 我国氢能高压储运设备发展现状及挑战[J]. 压力容器, 2022, 39(3): 1-8.
ZHENG J Y, MA K, YE S, et al.Development status and challenges of equipment for storage and transportation of high-pressure gaseous hydrogen in China[J]. Pressure vessel technology, 2022, 39(3): 1-8.
[6] TARHAN C, ALI ÇIL M.A study on hydrogen, the clean energy of the future: hydrogen storage methods[J]. Journal of energy storage, 2021, 40: 102676.
[7] JIANG Z T.Feasibility invetigation of several hydrogen generation & storage methods[C]//2021 International Conference on Energy Technology and Engineering Management (ETEM 2021). Harbin, China, 2021.
[8] 陈晓露, 刘小敏, 王娟, 等. 液氢储运技术及标准化[J]. 化工进展, 2021, 40(9): 4806-4814.
CHEN X L, LIU X M, WANG J, et al.Technology and standardization of liquid hydrogen storage and transportation[J]. Chemical industry and engineering progress, 2021, 40(9): 4806-4814.
[9] 蒲亮, 余海帅, 代明昊, 等. 氢的高压与液化储运研究及应用进展[J]. 科学通报, 2022, 67(19): 2172-2191.
PU L, YU H S, DAI M H, et al.Research progress and application of high-pressure hydrogen and liquid hydrogen in storage and transportation[J]. Chinese science bulletin, 2022, 67(19): 2172-2191.
[10] 王芳. 大型液氢贮罐的结构设计[D]. 南京: 东南大学, 2006.
WANG F.Structural design of large liquid hydrogen storage tank[D]. Nanjing: Southeast University, 2006.
[11] 陈崇昆. 300 m3液氢运输槽车液氢贮罐的研制[D]. 哈尔滨: 哈尔滨工业大学, 2015.
CHEN C K.Development of liquid hydrogen storage tank for 300 m3 liquid hydrogen transport tank car[D]. Harbin: Harbin Institute of Technology, 2015.
[12] MENG B, GU C H, ZHANG L, et al.Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures[J]. International journal of hydrogen energy, 2017, 42(11): 7404-7412.
[13] MANSILLA C, BOURASSEAU C, CANY C, et al.Hydrogen applications: overview of the key economic issues and perspectives[M]. Hydrogen Supply Chains. Amsterdam: Elsevier, 2018: 271-292.
[14] QIU Y N, YANG H A, TONG L G, et al.Research progress of cryogenic materials for storage and transportation of liquid hydrogen[J]. Metals, 2021, 11(7): 1101.
[15] ZHENG C S, YU W W.Effect of low-temperature on mechanical behavior for an AISI 304 austenitic stainless steel[J]. Materials science and engineering: A, 2018, 710: 359-365.
[16] HUANG S, MA D H, SHENG J, et al.Effects of laser peening on tensile properties and martensitic transformation of AISI 316L stainless steel in a hydrogen-rich environment[J]. Materials science and engineering: A, 2020, 788: 139543.
[17] STEWART M.Selection of tank materials[M]. Surface Production Operations. Amsterdam: Elsevier, 2021: 777-793.
[18] CLEMENS H, SMARSLY W.Light-weight intermetallic titanium aluminides-status of research and development[J]. Advanced materials research, 2011, 278: 551-556.
[19] QU C B, HUANG Y, LI F, et al.Enhanced cryogenic mechanical properties of carbon fiber reinforced epoxy composites by introducing graphene oxide[J]. Composites communications, 2020, 22: 100480.
[20] 何远新, 熊珍艳, 王红星, 等. 小型液氢储罐的结构设计及制造[J]. 太阳能, 2022(5): 115-119.
HE Y X, XIONG Z Y, WANG H X, et al.Structural design and manufacture of small-scale liquid hydrogen storage tank[J]. Solar energy, 2022(5): 115-119.
[21] KRENN A, DESENBERG D.Return to service of a liquid hydrogen storage sphere[J]. IOP conference series: materials science and engineering, 2020, 755(1): 012023.
[22] YOSHINO Y, HARADA E, INOUE K, et al.Feasibility study of “CO2 free hydrogen chain” utilizing Australian brown coal linked with CCS[J]. Energy procedia, 2012, 29: 701-709.
[23] ISHIMOTO Y, VOLDSUND M, NEKSÅ P, et al.Large-scale production and transport of hydrogen from Norway to Europe and Japan: value chain analysis and comparison of liquid hydrogen and ammonia as energy carriers[J]. International journal of hydrogen energy, 2020, 45(58): 32865-32883.
[24] ZHENG J P, CHEN L B, WANG P, et al.A novel cryogenic insulation system of hollow glass microspheres and self-evaporation vapor-cooled shield for liquid hydrogen storage[J]. Frontiers in energy, 2020, 14(3): 570-577.
[25] BAUMGARTNER R G.Demonstration of microsphere insulation in cryogenic vessels[C]//AIP Conference Proceedings. Keystone, Colorado, USA, 2006.
[26] SASS J P, FESMIRE J E, NAGY Z F, et al.Thermal performance comparison of glass microsphere and perlite insulation systems for liquid hydrogen storage tanks[C]//AIP Conference Proceedings. Chattanooge, Tennessee, USA, 2008.
[27] 严开祺, 王平, 张敬杰. 空心玻璃微球低温绝热性能研究进展[J]. 真空与低温, 2016, 22(2): 63-69.
YAN K Q, WANG P, ZHANG J J.Progress in the cryogenic insulation of hollow glass microspheres[J]. Vacuum and cryogenics, 2016, 22(2): 63-69.
[28] SASS J P, ST CYR W W, BARRETT T M, et al. Glass bubbles insulation for liquid hydrogen storage tanks[C]//AIP conference proceedings, Tucson, Arizona, USA, 2010.
[29] FESMIRE J, SWANGER A, JACOBSON J.Energy efficient large-scale storage of liquid hydrogen[C]//IOP Conference series: materials science and engineering, 2022, 1240(1): 012088.
[30] LYU B K, XU D, LI L F, et al.A 20 K cryogen-free leak detection system for cryogenic valves by using a GM cryocooler[J]. Cryogenics, 2021, 117: 103332.
[31] LEE J, LEE J, LEE J.A study on air-tightness of high pressure liquid hydrogen pumping system at the low temperature[J]. Transactions of the Korean Hydrogen and New Energy Society, 2013, 24(4): 302-310.
[32] PETITPAS G, MORENO-BLANCO J, ESPINOSA-LOZA F, et al.Rapid high density cryogenic pressure vessel filling to 345 bar with a liquid hydrogen pump[J]. International journal of hydrogen energy, 2018, 43(42): 19547-19558.
[33] PETITPAS G, ACEVES S M.Liquid hydrogen pump performance and durability testing through repeated cryogenic vessel filling to 700 bar[J]. International journal of hydrogen energy, 2018, 43(39): 18403-18420.
[34] APOSTOLOU D, XYDIS G.A literature review on hydrogen refuelling stations and infrastructure. current status and future prospects[J]. Renewable and sustainable energy reviews, 2019, 113: 109292.
[35] RIEDL S M.Development of a hydrogen refueling station design tool[J]. International journal of hydrogen energy, 2020, 45(1): 1-9.
[36] 段志祥, 管坚, 石坤. 我国加氢站发展现状综述及问题分析[J]. 化工装备技术, 2021, 42(4): 5-9.
DUAN Z X, GUAN J, SHI K.Summary and problem analysis on development status of hydrogenation station in China[J]. Chemical equipment technology, 2021, 42(4): 5-9.
[37] 潘相敏, 梁阳, 刘京京, 等. 国内外加氢站发展述评及相关建议[J]. 交通与运输, 2020, 36(3): 97-101.
PAN X M, LIANG Y, LIU J J, et al.Development of hydrogen refueling stations at home and abroad and related suggestions[J]. Traffic & transportation, 2020, 36(3): 97-101.
[38] ALAZEMI J, ANDREWS J.Automotive hydrogen fuelling stations: an international review[J]. Renewable and sustainable energy reviews, 2015, 48: 483-499.
[39] KIM H, EOM M, KIM B I.Development of strategic hydrogen refueling station deployment plan for Korea[J]. International journal of hydrogen energy, 2020, 45(38): 19900-19911.
[40] 朱琴君, 祝俊宗. 国内液氢加氢站的发展与前景[J]. 煤气与热力, 2020, 40(7): 15-19, 45.
ZHU Q J, ZHU J Z.Development and prospect of domestic liquid hydrogen refueling stations in China[J]. Gas & heat, 2020, 40(7): 15-19, 45.
[41] YAÏCI W, LONGO M. Feasibility investigation of hydrogen refuelling infrastructure for heavy-duty vehicles in Canada[J]. Energies, 2022, 15(8): 1-31.
[42] MAYER T, SEMMEL M, GUERRERO MORALES M A, et al. Techno-economic evaluation of hydrogen refueling stations with liquid or gaseous stored hydrogen[J]. International journal of hydrogen energy, 2019, 44(47): 25809-25833.
[43] 王江涛. 多种形式加氢合建站建设优化与技术研究[J]. 现代化工, 2022, 42(1): 7-12.
WANG J T.Construction optimization and technical research for various types of combined hydrogen fueling station[J]. Modern chemical industry, 2022, 42(1): 7-12.
[44] 郝加封, 曲伟强, 滕磊军, 等. 加氢站加氢枪特点与技术研发难点[J]. 中国新技术新产品, 2020(3): 35-39.
HAO J F, QU W Q, TENG L J, et al.Characteristics and technical research and development difficulties of hydrogen Gun in hydrogen refueling station[J]. New technology & new products of China, 2020(3): 35-39.
[45] 李跃娟, 赵梓茗, 姚占辉, 等. 中国典型区域车用氢能源产业及经济性分析[J]. 北京工业大学学报, 2022, 48(3): 331-344.
LI Y J, ZHAO Z M, YAO Z H, et al.Hydrogen energy industry and economic analysis for vehicles in representative regions of China[J]. Journal of Beijing University of Technology, 2022, 48(3): 331-344.
[46] YUAN W H, LI J F, ZHANG R P, et al.Numerical investigation of the leakage and explosion scenarios in China’s first liquid hydrogen refueling station[J]. International journal of hydrogen energy, 2022, 47(43): 18786-18798.
[47] LI S X, LONG J H, SUI P C, et al. Addition of hydrogen refueling for fuel cell bus fleet to existing natural gas stations: a case study in Wuhan, China[J]. International journal of energy research, 2019: er.4728.
[48] LEE J S, CHERIF A, YOON H J, et al.Large-scale overseas transportation of hydrogen: comparative techno-economic and environmental investigation[J]. Renewable and sustainable energy reviews, 2022, 165: 112556.
[49] KIM J, PARK H, JUNG W, et al.Operation scenario-based design methodology for large-scale storage systems of liquid hydrogen import terminal[J]. International journal of hydrogen energy, 2021, 46(80): 40262-40277.
[50] ISHIMOTO Y, KUROSAWA A, SASAKURA M, et al.Significance of CO2-free hydrogen globally and for Japan using a long-term global energy system analysis[J]. International journal of hydrogen energy, 2017, 42(19): 13357-13367.
[51] HANCOCK L, RALPH N.A framework for assessing fossil fuel ‘retrofit’ hydrogen exports: security-justice implications of Australia’s coal-generated hydrogen exports to Japan[J]. Energy, 2021, 223: 119938.
[52] OYAMA S, SATOH S, SAKANAKA S.HAZID for CO2-free hydrogen supply chain FEED (front end engineering design)[J]. International journal of hydrogen energy, 2017, 42(11): 7322-7330.
[53] 赵雅琦. LNG接收站卸料臂安全风险动态评估及预警研究[D]. 北京: 中国石油大学(北京), 2020.
ZHAO Y Q.Dynamic risk assessment and early warning of unloading arm in LNG terminal[D]. Beijing: China University of Petroleum (Beijing), 2020.
[54] INOMATA A, UMEMURA T, KAWAGUCHI J, et al.Performance test and analysis of the developed emergency release system for liquefied hydrogen installed in loading systems[J]. IOP conference series: materials science and engineering, 2019, 502: 012147.
[55] UNNO S, TAKASE T, UMEMURA T, et al. Liquefied hydrogen loading arm and liquefied hydrogen transport method: US10495258[P].2019-12-03.
[56] 王江涛, 杨璐. 氢能产业与LNG接收站联合发展技术分析[J]. 现代化工, 2019, 39(11): 5-11.
WANG J T, YANG L.Technical analysis on joint development of hydrogen industry and LNG terminal[J]. Modern chemical industry, 2019, 39(11): 5-11.
[57] HOSSEINI S E, BUTLER B.An overview of development and challenges in hydrogen powered vehicles[J]. International journal of green energy, 2020, 17(1): 13-37.
[58] RÜDIGER H. Design characteristics and performance of a liquid hydrogen tank system for motor cars[J]. Cryogenics, 1992, 32(3): 327-329.
[59] MICHEL F, FIESELER H, MEYER G, et al.On-board equipment for liquid hydrogen vehicles[J]. International journal of hydrogen energy, 1998, 23(3): 191-199.
[60] KNORR H, HELD W, PRÜMM W, et al. The man hydrogen propulsion system for city buses[J]. International journal of hydrogen energy, 1998, 23(3): 201-208.
[61] ARNOLD G, WOLF J.Liquid hydrogen for automotive application next generation fuel for FC and ICE vehicles[J]. TEION KOGAKU (Journal of the Cryogenic Society of Japan), 2005, 40(6): 221-230.
[62] 张志芸, 张国强, 刘艳秋, 等. 车载储氢技术研究现状及发展方向[J]. 油气储运, 2018, 37(11): 1207-1212.
ZHANG Z Y, ZHANG G Q, LIU Y Q, et al.Research status and development direction of on-board hydrogen storage technologies[J]. Oil & gas storage and transportation, 2018, 37(11): 1207-1212.
[63] AMASEDER F, KRAINZ G.Liquid hydrogen storage systems developed and manufactured for the first time for customer cars[C]//SAE Technical Paper Series. 2006, 1:0432.
[64] WALLNER T, LOHSE-BUSCH H, GURSKI S, et al.Fuel economy and emissions evaluation of BMW Hydrogen 7 Mono-Fuel demonstration vehicles[J]. International journal of hydrogen energy, 2008, 33(24): 7607-7618.
[65] ACEVES S M, ESPINOSA-LOZA F, LEDESMA-OROZCO E, et al.High-density automotive hydrogen storage with cryogenic capable pressure vessels[J]. International journal of hydrogen energy, 2010, 35(3): 1219-1226.
[66] ESPINOSA-LOZA F J. Analysis and design of cryogenic pressure vessels for automotive hydrogen storage[D]. Davis: University of California, 2014.
[67] 张爽. 氢能与燃料电池的发展现状分析及展望[J]. 当代化工研究, 2022(11):9-11.
ZHANG S.Analysis and prospect of the development status of hydrogen energy and fuel cells[J]. Modern chemical research, 2022(11):9-11.
[68] CHOI Y, KIM J, PARK S, et al.Design and analysis of liquid hydrogen fuel tank for heavy duty truck[J]. International journal of hydrogen energy, 2022, 47(32): 14687-14702.
[69] TAPEINOS I G, KOUSSIOS S, GROVES R M.Design and analysis of a multi-cell subscale tank for liquid hydrogen storage[J]. International journal of hydrogen energy, 2016, 41(5): 3676-3688.
[70] 曹军文, 覃祥富, 耿嘎, 等. 氢气储运技术的发展现状与展望[J]. 石油学报(石油加工), 2021, 37(6): 1461-1478.
CAO J W, QIN X F, GENG G, et al.Current status and prospects of hydrogen storage and transportation technology[J]. Acta petrolei sinica(petroleum processing section), 2021, 37(6): 1461-1478.
[71] 王红雨, 黄宏, 陈光奇, 等. 85 m3液氢铁路槽车的检漏和抽空[J]. 低温工程, 2007(6): 38-42, 50.
WANG H Y, HUANG H, CHEN G Q, et al.Leak detection and evacuation for 85 m3 railway vessel car of liquid hydrogen[J]. Cryogenics, 2007(6): 38-42, 50.
[72] AHN J, YOU H, RYU J, et al.Strategy for selecting an optimal propulsion system of a liquefied hydrogen tanker[J]. International journal of hydrogen energy, 2017, 42(8): 5366-5380.
[73] BABARIT A, GILLOTEAUX J C, CLODIC G, et al.Techno-economic feasibility of fleets of far offshore hydrogen-producing wind energy converters[J]. International journal of hydrogen energy, 2018, 43(15): 7266-7289.
[74] ABDULLAH N A, SURESH S, PERICLES P.A hydrogen fuelled LH2 tanker ship design[J]. Ships and offshore structures, 2022, 17(7): 1555-1564.
[75] LEE J, CHOI Y, CHE S, et al.Integrated design evaluation of propulsion, electric power, and re-liquefaction system for large-scale liquefied hydrogen tanker[J]. International journal of hydrogen energy, 2022, 47(6): 4120-4135.
[76] NOH H J, KANG K G, SEO Y K.Environmental and energy efficiency assessments of offshore hydrogen supply chains utilizing compressed gaseous hydrogen, liquefied hydrogen, liquid organic hydrogen carriers and ammonia[J]. International journal of hydrogen energy, 2023, 48(20): 7515-7532.
[77] HIRAOKA K, WATANABE K, MORISHITA T, et al.Energy analysis and CO2 emission evaluation of a solar hydrogen energy system for the transportation system in Japan—II. evaluation of the system[J]. International journal of hydrogen energy, 1991, 16(11): 755-764.
[78] GRETZ J, BASELT J P, ULLMANN O, et al.The 100 MW euro-Quebec hydro-hydrogen pilot project[J]. International journal of hydrogen energy, 1990, 15(6): 419-424.
[79] PETERSEN U, WÜRSIG G, KRAPP R. Design and safety considerations for large-scale sea-borne hydrogen transport[J]. International journal of hydrogen energy, 1994, 19(7): 597-604.
[80] GIACOMAZZI G, GRETZ J.Euro-Quebec Hydro-Hydrogen Project (EQHHPP): a challenge to cryogenic technology[J]. Cryogenics, 1993, 33(8): 767-771.
[81] MITSUGI C, HARUMI A, KENZO F.WE-NET: Japanese hydrogen program[J]. International journal of hydrogen energy, 1998, 23(3): 159-165.
[82] ABE A, NAKAMURA M, SATO I, et al.Studies of the large-scale sea transportation of liquid hydrogen[J]. International journal of hydrogen energy, 1998, 23(2): 115-121.
[83] MAEKAWA K, TAKEDA M, HAMAURA T, et al.First experiment on liquid hydrogen transportation by ship inside Osaka Bay[J]. IOP conference series: materials science and engineering, 2017, 278: 012066.
[84] KAMIYA S, NISHIMURA M, HARADA E.Study on introduction of CO2 free energy to Japan with liquid hydrogen[J]. Physics procedia, 2015, 67: 11-19.
[85] 时光志. 液氢运输船技术现状及发展方向[J]. 船海工程, 2022, 51(2): 81-85.
SHI G Z.On technical status and development direction of liquid hydrogen carrier[J]. Ship & ocean engineering, 2022, 51(2): 81-85.
[86] BERSTAD D, GARDARSDOTTIR S, ROUSSANALY S, et al.Liquid hydrogen as prospective energy carrier: a brief review and discussion of underlying assumptions applied in value chain analysis[J]. Renewable and sustainable energy reviews, 2022, 154: 111772.
[87] ALKHALEDI A N, SAMPATH S, PILIDIS P.Propulsion of a hydrogen-fuelled LH2 tanker ship[J]. International journal of hydrogen energy, 2022, 47(39): 17407-17422.

基金

国家重点研发计划(2020YFB1506205); 国家自然科学基金(52163033)

PDF(3255 KB)

Accesses

Citation

Detail

段落导航
相关文章

/