可摆动前墙的OWC浮式平台波浪能转换性能研究

彭秋平, 邱守强, 梁富琳, 柏志辉

太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 402-409.

PDF(2010 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2010 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 402-409. DOI: 10.19912/j.0254-0096.tynxb.2022-1560

可摆动前墙的OWC浮式平台波浪能转换性能研究

  • 彭秋平1, 邱守强1, 梁富琳1, 柏志辉2
作者信息 +

STUDY ON WAVE ENERGY CONVERSION PERFORMANCE FOR OWC FLOATING PLATFORM WITH SWINGABLE FRONT WALL

  • Peng Qiuping1, Qiu Shouqiang1, Liang Fulin1, Bai Zhihui2
Author information +
文章历史 +

摘要

提出一种综合海上波浪能转换装置的新型浮式平台,通过将一阻尼池型浮式平台与OWC波浪能装置结合,OWC气室前墙采用固定式和摆式,前墙摆板与气室通过铰链连接。基于三维势流理论,研究平台在不同波浪周期、平台吃水和气室尺寸下气室的俘获宽度比,及不同铰链转动阻尼下摆板的俘获宽度比。结果表明:不同平台吃水和不同气室尺寸通过影响平台和气室的共振周期影响气室的俘获宽度比,在较大的平台吃水和较小的气室前墙吃水条件下,会出现波浪抨击气室顶部和前墙露出水面的问题;在一定波浪环境下,存在一个最优的铰链转动阻尼,使得摆板的俘获宽度比最高;在固定的铰链转动阻尼下,摆板的俘获宽度比随波浪周期增大而逐渐减小,在波浪周期较小及平台共振周期处,摆式前墙结构比固定式前墙的气室俘获宽度比更大。

Abstract

A new type of floating platform with integrated offshore wave energy conversion device is proposed, by integrating a damping pool type floating platform with an OWC wave energy device, the front wall of the OWC chamber is fixed or connected to the chamber by a top hinge. Based on the three-dimensional potential flow theory, the capture width ratios of the air chamber and the pendulum front wall under different wave periods, different platform drafts and different air chamber sizes are studied. Results show that different platform drafts and different chamber sizes affect the capture width ratio of the chamber by influencing the resonance periods of the platform and the chamber, and under the condition of larger platform drafts and smaller chamber front wall drafts, the problem of wave slaming at the top of the air chamber and the front wall will occur. For a given wave environment, there exit an optimal hinge rotational damping, which makes the capture width ratio of the swing plate highest. For a given hinge rotational damping, the capture width ratio of the pendulum gradually decreases with increasing wave period, at lower wave periods and platform resonance periods, the pendulum front wall structure has a larger chamber capture width ratio than the fixed front wall.

关键词

波浪能转换 / 摆式 / 阻尼 / 振荡水柱 / 俘获宽度比

Key words

wave energy conversion / pendulums / damping / oscillating water column / capture width ratio

引用本文

导出引用
彭秋平, 邱守强, 梁富琳, 柏志辉. 可摆动前墙的OWC浮式平台波浪能转换性能研究[J]. 太阳能学报. 2024, 45(1): 402-409 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1560
Peng Qiuping, Qiu Shouqiang, Liang Fulin, Bai Zhihui. STUDY ON WAVE ENERGY CONVERSION PERFORMANCE FOR OWC FLOATING PLATFORM WITH SWINGABLE FRONT WALL[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 402-409 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1560
中图分类号: P743.2   

参考文献

[1] 周孟然. 新型浮式风能-波浪能集成结构风浪耦合分析[D]. 大连: 大连理工大学, 2017.
ZHOU M R.Coupled wind and wave anslysis of a new combined floating wind turbine and wave energy converter system[D]. Dalian: Dalian University of Technology, 2017.
[2] 沈勇. 浮式防波堤月池效应与波浪能发电[D]. 镇江: 江苏科技大学, 2020.
SHEN Y.Moon pool effect of floating breakwater and wave energy power generation[D]. Zhenjiang: Jiangsu University of Science and Technology, 2020.
[3] NING D Z, ZHAO X L, GÖTEMAN M, et al. Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: an experimental study[J]. Renewable energy, 2016, 95: 531-541.
[4] KOO W.Nonlinear time-domain analysis of motion-restrained pneumatic floating breakwater[J]. Ocean engineering, 2009, 36(9/10): 723-731.
[5] HE F, HUANG Z H, LAW A W K. An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction[J]. Applied energy, 2013, 106: 222-231.
[6] HE F, HUANG Z H, LAW A W K. Hydrodynamic performance of a rectangular floating breakwater with and without pneumatic chambers: an experimental study[J]. Ocean engineering, 2012, 51: 16-27.
[7] HE F, HUANG Z H.Hydrodynamic performance of pile-supported OWC-type structures as breakwaters: an experimental study[J]. Ocean engineering, 2014, 88: 618-626.
[8] TAY Z Y.Performance and wave impact of an integrated multi-raft wave energy converter with floating breakwater for tropical climate[J]. Ocean engineering, 2020, 218: 108136.
[9] CHENG Y, XI C, DAI S S, et al.Performance characteristics and parametric analysis of a novel multi-purpose platform combining a moonpool-type floating breakwater and an array of wave energy converters[J]. Applied energy, 2021, 292: 116888.
[10] 任翔, 邓争志, 程鹏达. 带纵摇前墙的新型振荡水柱式波浪能装置转换效率以及水动力性能数值研究[J]. 海洋工程, 2021, 39(5): 66-77.
REN X, DENG Z Z, CHENG P D.Numerical simulation on the extraction efficiency and hydrodynamic performance of an OWC device with a pitching front-wall[J]. The ocean engineering, 2021, 39(5): 66-77.
[11] 田育丰, 黄焱, 史庆增. 摆式波浪发电装置一级转化效率模型试验研究[J]. 海洋工程, 2012, 30(3): 177-184.
TIAN Y F, HUANG Y, SHI Q Z.Model test study of the primary energy converting efficiency of pendulum wave power device[J]. The ocean engineering, 2012, 30(3): 177-184.
[12] 史宏达, 张雨晴, 赵晨羽, 等. 底铰摆式波浪能转换装置实验研究[J]. 太阳能学报, 2020, 41(6): 150-155.
SHI H D, ZHANG Y Q, ZHAO C Y, et al.Experimental study of bottom-hinged flap-type wave energy converter[J]. Acta energiae solaris sinica, 2020, 41(6): 150-155.
[13] ZABIHI M, MAZAHERI S, NAMIN M M, et al.Irregular wave interaction with an offshore OWC wave energy converter[J]. Ocean engineering, 2021, 222: 108619.
[14] 郭权势, 邓争志, 万占鸿. 集成于方箱防波堤的双气室振荡水柱波浪能装置转换效率研究[J]. 海洋工程,2022, 40(2): 106-117.
GUO Q S, DENG Z Z, WAN Z H.A study on the wave power extraction efficiency of the dual-chamber OWC converter integrated into a rectangular breakwater[J]. The ocean engineering, 2022,40(2): 106-117.
[15] HOWE D, NADER J R, MACFARLANE G.Performance analysis of a floating breakwater integrated with multiple oscillating water column wave energy converters in regular and irregular seas[J]. Applied ocean research, 2020, 99: 102147.
[16] CHENG Y, FU L, DAI S S, et al.Experimental and numerical analysis of a hybrid WEC-breakwater system combining an oscillating water column and an oscillating buoy[J]. Renewable and sustainable energy reviews, 2022, 169: 112909.
[17] DIZON C, CAVAGNARO R J, ROBERTSON B, et al.Modular horizontal pendulum wave energy converter: exploring feasibility to power ocean observation applications in the U.S. pacific northwest[J]. IET renewable power generation, 2021, 15(14): 3354-3367.
[18] WAN Z H, LI Z, ZHANG D H, et al.Design and research of slope-pendulum wave energy conversion device[J]. Journal of marine science and engineering, 2022, 10(11): 1572.
[19] LIU H W, LI Y J, LIN Y G, et al.The application of the digital controlled hydraulic cylinders group in pendulum wave energy[J]. IEEE/ASME transactions on mechatronics, 2020, 25(2): 673-682.
[20] 胡聪, 毛海英, 尤再进, 等. 中国海域波浪能资源分布及波浪能发电装置适用性研究[J]. 海洋科学, 2018, 42(3): 142-148.
HU C, MAO H Y, YOU Z J, et al.Study on the distribution of wave energy resources in China and the applicability of wave energy generation device[J]. Marine sciences, 2018, 42(3): 142-148.
[21] YUEH C Y, CHUANG S H.Analysis of a piston-type porous wave energy converter[C]//The Twentieth International Offshore and Polar Engineering Conference. Beijing, China, 2010.
[22] QIU S Q, LIU K, WANG D J, et al.A comprehensive review of ocean wave energy research and development in China[J]. Renewable and sustainable energy reviews, 2019, 113: 109271.
[23] QIU S Q, YE J W, WANG D J, et al.Experimental study on a pendulum wave energy converter[J]. China ocean engineering, 2013, 27(3): 359-368
[24] ITURRIOZ A, GUANCHE R, ARMESTO J A, et al.Time-domain modeling of a fixed detached oscillating water column towards a floating multi-chamber device[J]. Ocean engineering, 2014, 76: 65-74.
[25] 曲铭, 于定勇, 王世林, 等. 前墙结构对OWC气室捕能效果影响的数值研究[J]. 海岸工程, 2020, 39(2): 111-118.
QU M, YU D Y, WANG S L, et al.Numerical study on the influence of front wall structure on energy capture effect of OWC chamber[J]. Coastal engineering, 2020, 39(2): 111-118.
[26] 邱守强, 王冬姣, 叶家玮, 等. 底铰摆式波浪能转换装置实验研究[J]. 中国海洋大学学报(自然科学版), 2017, 47(5): 121-127.
QIU S Q, WANG D J, YE J W, et al.Experimental study on bottom-hinged flap-type wave energy converter[J].Periodical of Ocean University of China, 2017, 47(5): 121-127.
[27] CHEN J, WEN H J, WANG Y X, et al.A correlation study of optimal chamber width with the relative front wall draught of onshore OWC device[J]. Energy, 2021, 225: 120307.

基金

中央高校基本科研业务费专项资金(2022ZYGXZR0085)

PDF(2010 KB)

Accesses

Citation

Detail

段落导航
相关文章

/