A mathematical model of the multi-energy complementary system is established based on the characteristics of regional-type cooling, heating and power multi-generation with the constraints of energy flow balance and equipment operation. A multi-energy complementary system evaluation index system is constructed from the dimensions of system economy, environmental protection and thermal performance. In addition, typical daily data and weight coefficients are incorporated into the system to form a building energy optimization allocation model based on PSO algorithm. Through the case simulation analysis, the economic performance of daily operation can be improved by 7.24% and the environmental performance by 14.55%, and the annual carbon emission can be reduced by 3071.1 tons and the energy consumption by 18.5% year-on-year.
Yue Jiahe, Chen Guo, Song Tao, Zhang Zhaorui, Zhang Wenxu, Ge Huijun.
OPTIMAL ALLOCATION STUDY OF BUILDING ENERGY SYSTEM BASED ON CARBON INDEX[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 170-177 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1567
中图分类号:
TK01+8
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 中国建筑能耗研究报告2020[J]. 建筑节能(中英文), 2021, 49(2): 1-6. China building energy consumption annual report 2020[J]. Building energy efficiency, 2021, 49(2): 1-6. [2] 张秀敏, 吴朝晖. 建筑物碳排放核算方法探析[J]. 工业技术经济, 2019, 38(10): 31-40. ZHANG X M, WU Z H.A study of carbon emission accounting method of buildings[J]. Industrial technology & economy, 2019, 38(10): 31-40. [3] JRADI M, ARENDT K, SANGOGBOYE F C, et al.ObepME: an online building energy performance monitoring and evaluation tool to reduce energy performance gaps[J]. Energy & buildings, 2018, 166: 196-209. [4] 张伟波, 谢玉荣, 杨帆, 等. 多能互补供能系统及典型开发方案研究[J]. 发电技术, 2020, 41(3): 245-251. ZHANG W B, XIE Y R, YANG F, et al.Research on multi-energy complementary distributed integrated energy supply system and typical development scheme[J]. Power generation technology, 2020, 41(3): 245-251. [5] 龙虹毓, 何国军, 徐瑞林, 等. 计及分布式电源热泵的热电联产协调优化调度与能效分析[J]. 电力系统自动化, 2013, 37(14): 38-42. LONG H Y, HE G J, XU R L, et al.Cogeneration coordination optimal dispatch and energy efficiency analysis containing distributed electric heat pumps[J]. Automation of electric power systems, 2013, 37(14): 38-42. [6] 周任军, 康信文, 李绍金, 等. 冷热电联供系统能量流函数及运行策略[J]. 电力自动化设备, 2014, 34(1): 1-5. ZHOU R J, KANG X W, LI S J, et al.Energy flow function and operational strategy of CCHP system[J]. Electric power automation equipment, 2014, 34(1): 1-5. [7] STADLER M, SIDDQUI A, MARNAY C, et al.Control of greenhouse gas emissions by optimal DER technology investment and energy management in zero-net-energy, buildings[J]. European transactions on electrical power, 2011, 21(2): 1291-1309. [8] 刘秀如. 多能互补集成优化系统分析与展望[J]. 节能, 2018, 37(9): 28-33. LIU X R.Analysis and prospect of multi-energy complementary system[J]. Energy conservation, 2018, 37(9): 28-33. [9] 邢敖, 邢果霖. 基于混合粒子群的风-光互补多周期发电调度系统设计[J]. 现代电子技术, 2022, 45(2):120-124. XING A, XING G L.Design of wind-light complementary multi-period power generation scheduling system based on hybrid particle swarm[J]. Modern electronics technique, 2022, 45(2): 120-124. [10] 吕春杰, 杨俊, 杨远昭, 等. 基于燃气轮机冷热电三联产系统的优化运行[J]. 计算机仿真, 2016, 33(7): 175-179. LYU C J, YANG J, YANG Y Z, et al.The optimal operation of the system which is combined by cooling, heating and power based on the gas turbine[J]. Computer simulation, 2016, 33(7): 175-179. [11] 曹又敏. 基于多能互补的园区综合能源系统优化调度[D]. 西安: 西安理工大学, 2020. CAO Y M.Optimal scheduling of integrated energy system based on multi-energy complementarity[D]. Xi’an: Xi’an University of Technology, 2020. [12] 陈宜, 徐英新, 徐东杰, 等. 终端型多能互补系统的最优配置与性能分析[J]. 发电技术, 2022, 43(6): 823-833. CHEN Y, XU Y X, XU D J, et al.Optimal configuration and performance analysis of terminal multi-energy complementary system[J]. Power generation technology,2022, 43(6): 823-833. [13] 曾艾东. 冷热电混合能源联合优化运行与调度策略研究[D]. 南京: 东南大学, 2017. ZENG A D.Research on the optimized operation and schedule strategy of CCHP system[D]. Nanjing: Southeast University, 2017. [14] BENMOUIZA K, TADj M, CHEKNANE A.Classification of hourly solar radiation using fuzzy C-means algorithm for optimal stand-alone PV system sizing[J]. International journal of electrical power and energy systems, 2016, 82: 233-241. [15] 刘清, 张建忠, 张少凡. 南京地区可再生能源资源条件分析[C]//2011江苏省暖通空调制冷学术年会论文集, 南京, 2011: 379-385. LIU Q, ZHANG J Z, ZHANG S F.Analysis of renewable energy resource conditions in Nanjing area[C]//Proceedings of the 2011 Jiangsu Provincial HVACR Academic Conference, Nanjing, 2011: 379-385. [16] 张一帆, 李明, 梁欢, 等. 基于蒙特卡洛的区域供热系统不确定热需求场景研究[J]. 建筑科学, 2022, 38(10): 243-250. ZHANG Y F, LI M, LIANG H, et al.Study on the uncertainty of thermal scenarios in district heating system based on monte carlo method[J]. Building science, 2022, 38(10): 243-250.