基于高斯混合模型聚类的双馈风电场动态等值建模方法

邓俊, 张阳, 李怡然, 夏楠, 戚正浩, 高桐

太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 342-350.

PDF(5551 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(5551 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 342-350. DOI: 10.19912/j.0254-0096.tynxb.2022-1571

基于高斯混合模型聚类的双馈风电场动态等值建模方法

  • 邓俊1, 张阳2, 李怡然1, 夏楠1, 戚正浩2, 高桐2
作者信息 +

DYNAMIC EQUIVALENCE MODELING OF DOUBLY-FED WIND FARM BASED ON GAUSSIAN MIXTURE MODEL CLUSTERING ALGORITHM

  • Deng Jun1, Zhang Yang2, Li Yiran1, Xia Nan1, Qi Zhenghao2, Gao Tong2
Author information +
文章历史 +

摘要

针对风电场动态运行条件下等值建模精度偏低、聚类依据不足的难题,提出一种基于高斯混合模型聚类思想的风电场等值建模方法。首先,分析单台双馈感应式风力发电机在低电压穿越期间的动态响应特性,根据响应特性的集群特征构建聚类指标。然后,提出基于高斯混合模型动态初步聚类、优化聚类数目的两阶段等值建模方法,推导出赤池信息和贝叶斯信息准则下聚类数目的寻优算法。以典型中等规模风电场为例,在Matlab/Simulink平台进行不同故障穿越条件的仿真测试,结果表明所提风电场等值建模方法聚类有效、精度高。

Abstract

In response to the difficulties of low accuracy of equivalence modeling and insufficient clustering basis under dynamic operating conditions of wind farms, a wind farm equivalence modeling method based on the idea of Gaussian mixture model clustering is proposed. First, the dynamic response characteristics of a single doubly-fed induction wind turbine during LVRT are analyzed, and the clustering indexes are constructed based on the clustering characteristics of the response characteristics. Then, a two-stage equivalence modeling method based on Gaussian mixture model with dynamic preliminary clustering and optimized number of clusters is proposed, and an optimization search algorithm for the number of clusters under the criteria of red pool information and Bayesian information is derived. Simulation tests with different fault ride-through conditions are carried out in Matlab/Simulink platform for a typical medium-scale wind farm, and the results show that the proposed equivalence modeling method for wind farms is effective in clustering with high accuracy.

关键词

风电场 / 低电压穿越 / 风速 / 双馈风力发电机 / 高斯混合模型聚类 / 等值建模

Key words

wind farm / low-voltage ride-through / wind speed / DFIG / Gaussian mixture model clustering / equivalent model

引用本文

导出引用
邓俊, 张阳, 李怡然, 夏楠, 戚正浩, 高桐. 基于高斯混合模型聚类的双馈风电场动态等值建模方法[J]. 太阳能学报. 2024, 45(1): 342-350 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1571
Deng Jun, Zhang Yang, Li Yiran, Xia Nan, Qi Zhenghao, Gao Tong. DYNAMIC EQUIVALENCE MODELING OF DOUBLY-FED WIND FARM BASED ON GAUSSIAN MIXTURE MODEL CLUSTERING ALGORITHM[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 342-350 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1571
中图分类号: TM614   

参考文献

[1] 王磊, 盖春阳, 王恒. 基于改进D-K聚类算法的直驱型风电场动态等值建模[J]. 太阳能学报, 2021, 42(3): 48-55.
WANG L, GAI C Y, WANG H.Dynamic equivalence method of pmsg wind farms based on improved D-K clustering algorithm[J]. Acta energiae solaris sinica, 2021, 42(3): 48-55.
[2] HAN J, MIAO S H, CHEN Z, et al.A novel wind farm equivalent model for high voltage ride through analysis based on multi-view incremental transfer clustering[J]. International journal of electrical power & energy systems, 2022, 135: 107527.
[3] ZOU J X, PENG C, YAN Y, et al.A survey of dynamic equivalent modeling for wind farm[J]. Renewable and sustainable energy reviews, 2014, 40: 956-963.
[4] 韩佶, 苗世洪, 李力行, 等. 基于多视角迁移学习的风场内机群划分及等值风场参数综合优化[J]. 中国电机工程学报, 2020, 40(15): 4866-4881.
HAN J, MIAO S H, LI L X, et al.Wind turbines clustering in wind farm based on multi-view transfer learning and synthetic optimization of parameters in equivalent wind farm[J]. Proceedings of the CSEE, 2020, 40(15): 4866-4881.
[5] 吴志鹏, 曹铭凯, 李银红. 计及Crowbar状态改进识别的双馈风电场等值建模方法[J]. 中国电机工程学报, 2022, 42(2): 603-614.
WU Z P, CAO M K, LI Y H.An equivalent modeling method of DFIG-based wind farm considering improved identification of crowbar status[J]. Proceedings of the CSEE, 2022, 42(2): 603-614.
[6] 苏剑涛, 郑书婷, 严干贵, 等. 基于改进FCM聚类算法的风电场等值建模研究[J]. 智慧电力, 2021, 49(10): 68-74.
SU J T, ZHENG S T, YAN G G, et al.Equivalent modeling of wind farm based on improved FCM clustering algorithm[J]. Smart power, 2021, 49(10): 68-74.
[7] 张星, 李龙源, 胡晓波, 等. 基于风电机组输出时间序列数据分群的风电场动态等值[J]. 电网技术, 2015, 39(10): 2787-2793.
ZHANG X, LI L Y, HU X B, et al.Wind farm dynamic equivalence based on clustering by output time series data of wind turbine generators[J]. Power system technology, 2015, 39(10): 2787-2793.
[8] 陆飞, 刘其辉, 赵亚男, 等. 基于低电压穿越去磁控制的风电场内部故障等值建模方法[J]. 电力系统自动化, 2016, 40(10): 24-30, 37.
LU F, LIU Q H, ZHAO Y N, et al.Equivalent modeling method for wind farm inner fault based on demagnetizing control of low voltage ride through[J]. Automation of electric power systems, 2016, 40(10): 24-30, 37.
[9] JIN Y Q, WU D M, JU P, et al.Modeling of wind speeds inside a wind farm with application to wind farm aggregate modeling considering LVRT characteristic[J]. IEEE transactions on energy conversion, 2020, 35(1): 508-519.
[10] 韩平平, 夏雨, 丁明, 等. 基于PCA和CA-ST方法的风电场等值建模研究[J]. 太阳能学报, 2020, 41(11): 267-277.
HAN P P, XIA Y, DING M, et al.Equivalent modeling of wind farm based on PCA and CA-ST methods[J]. Acta energiae solaris sinica, 2020, 41(11): 267-277.
[11] 徐玉琴, 刘丹丹. 基于两步分群法的双馈机组风电场等值建模[J]. 电力系统保护与控制, 2017, 45(6): 108-114.
XU Y Q, LIU D D.Equivalence of wind farms with DFIG based on two-step clustering method[J]. Power system protection and control, 2017, 45(6): 108-114.
[12] ZOU J X, PENG C, XU H B, et al.A fuzzy clustering algorithm-based dynamic equivalent modeling method for wind farm with DFIG[J]. IEEE transactions on energy conversion, 2015, 30(4): 1329-1337.
[13] 吴红斌, 何叶, 赵波, 等. 基于改进K-means聚类算法的风电场动态等值[J]. 太阳能学报, 2018, 39(11): 3232-3238.
WU H B, HE Y, ZHAO B, et al.Research on dynamic equivalent of wind farm based on improved K-means clustering algorithm[J]. Acta energiae solaris sinica, 2018, 39(11): 3232-3238.
[14] 林俐, 潘险险, 张凌云, 等. 基于免疫离群数据和敏感初始中心的K-means算法的风电场机群划分[J]. 中国电机工程学报, 2016, 36(20): 5461-5468, 5722.
LIN L, PAN X X, ZHANG L Y, et al.The K-means clustering algorithm for wind farm based on immune-outlier data and immune-sensitive initial center[J]. Proceedings of the CSEE, 2016, 36(20): 5461-5468, 5722.
[15] 高元海, 徐潇源, 严正. 基于多维高斯混合模型的电力系统不确定性建模方法[J]. 中国电机工程学报, 2023, 43(1): 37-48.
GAO Y H, XU X Y, YAN Z.Power system uncertainty modeling based on multivariate Gaussian mixture model[J]. Proceedings of the CSEE, 2023, 43(1): 37-48.
[16] LI W X, CHAO P P, LIANG X D, et al.A practical equivalent method for DFIG wind farms[J]. IEEE transactions on sustainable energy, 2018, 9(2): 610-620.
[17] 郑子萱, 宋东徽, 杜凯健, 等. 直流换相失败下计及撬棒保护的双馈风机暂态特性解析与撬棒参数修正[J]. 中国电机工程学报, 2023, 43(6): 2222-2234.
ZHENG Z X, SONG D H, DU K J, et al.Analysis of transient characteristics and correction of crowbar resistance of doubly fed induction generator with crowbar protection under HVDC commutation failure[J]. Proceedings of the CSEE, 2023, 43(6): 2222-2234.
[18] GB/T 19963.1—2021, 风电场接入电力系统技术规定第1部分:陆上风电[S].
GB/T 19963.1—2021, Technical specification for connecting wind farm to power system—Part 1: On shore wind power[S].
[19] VANDERPLAS J.Python data science handbook: essential tools for working with data[M]. Posts and Telecommunications Press, O′Reilly Media, Inc, 2016.
[20] 张景肖, 刘史诗, 王伟华, 等. 基于AIC准则的函数型数据主成分联合选择研究[J]. 数理统计与管理, 2022, 41(4): 610-622.
ZHANG J X, LIU S S, WANG W H, et al.Jointly selecting the number of principal components for functional data based on akaike information criterion[J]. Journal of applied statistics and management, 2022, 41(4): 610-622.
[21] 秦宣云. 基于AIC准则的最近邻聚类模型的优化算法[J]. 系统工程与电子技术, 2005, 27(2): 257-259.
QIN X Y.Nearest neighbor clustering algorithm based on AIC criterion[J]. Systems engineering and electronics, 2005, 27(2): 257-259.
[22] 王一妹, 刘辉, 宋鹏, 等. 基于高斯混合模型聚类的风电场短期功率预测方法[J]. 电力系统自动化, 2021, 45(7): 37-43.
WANG Y M, LIU H, SONG P, et al.Short-term power forecasting method of wind farm based on Gaussian mixture model clustering[J]. Automation of electric power systems, 2021, 45(7): 37-43.

基金

国家自然科学基金(51877174); 国网陕西省电力有限公司科技项目(5226KY20001Q)

PDF(5551 KB)

Accesses

Citation

Detail

段落导航
相关文章

/