动态性是围护结构传热的本质属性,动态热响应机理是其动态运行规律的体现。围护结构在夏季的动态性比在冬季表现更为典型,因此该文开展隔热建筑的围护结构动态性机理及应用研究。通过研究围护结构的动态热响应机理提出围护结构最大防热量Gmax,该指标兼顾多种工况下围护结构热性能的评价。以夏热冬冷地区的重庆为例进行模拟分析。研究发现:Gmax <60 W/m2时,提升墙体最大防热量可有效提升其动态热响应性能;Gmax在60~90 W/m2之间时,提升墙体最大防热量可较少提升其动态热响应性能;Gmax >90 W/m2时,提升墙体最大防热量反而会降低其动态热响应性能。
Abstract
The dynamic property is the essential property of heat transfer in the envelope, and the dynamic thermal response mechanism is the embodiment of its dynamic operation law. The dynamic behavior of the envelope structure in summer is more typical than that in winter. Therefore, this paper studies the dynamic mechanism and application of of thermal isolation building envelope. By investigating the dynamic thermal response mechanism of the building envelope, this paper propose a novel metric called Gmax which comprehensively evaluates the thermal performance of the envelope structure under diverse operational conditions. Chongqing, which is hot in summer and cold in winter, is taken as an example for simulation analysis. The results show that when Gmax<60 W/m2, the dynamic thermal response performance can be effectively improved by increasing the maximum heat isolation Gmax of the wall. When Gmax=60~90 W/m2, the dynamic thermal response performance can be less improved by increasing Gmax>90 W/m2, the dynamic thermal response performance of the wall will be reduced by increasing Gmax.
关键词
被动式太阳能建筑 /
热舒适 /
节能 /
围护结构 /
动态热响应 /
最大防热量
Key words
passive solar building /
thermal comfort /
energy conservation /
envelope structure /
dynamic thermal response /
maximum heat isolation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CHOI W, OOKA R, SHUKUYA M.Unsteady-state exergetic performance comparison of externally and internally insulated building envelopes[J]. International journal of heat and mass transfer, 2020, 163(9): 120414.
[2] PAGE A, MOGHTADERI B, ALTERMAN D, et al.A study of the thermal performance of Australian housing[M]. Newcastle: The University of Newcastle, 2011.
[3] KOSSECKA E, KOSNY J.Effect of insulation and mass distribution in exterior walls on dynamic thermal performance of whole buildings[J]. Proceedings of Thermal Performance of the Exterior Envelopes of Buildings VII. Clearwater Beach, Florida, USA, 1998: 721-731.
[4] ASAN H.Effects of wall’s insulation thickness and position on time lag and decrement factor[J]. Energy and buildings, 1998, 28(3): 299-305.
[5] BALAJI N C, MANI M, VENKATARAMA REDDY B V. Dynamic thermal performance of conventional and alternative building wall envelopes[J]. Journal of building engineering, 2019, 21: 373-395.
[6] SABOOR S, BABU T P A. Analytical computation of admittance, decrement factor, time lag and surface factors for different exterior wall materials of the buildings in dakshina kannada district[C]//The 22th National and 11th International ISHMT-ASME Heat and Mass Transfer Conference. Iit kharagpur, India, 2013.
[7] OZEL M, OZEL C.Effects of wall orientation and thermal insulation on time lag and decrement factor[C]//The 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics. Hefat, Malta, 2012.
[8] ALTERMAN D, MOFFIET T, HANDS S, et al.A concept for a potential metric to characterise the dynamic thermal performance of walls[J]. Energy and buildings, 2012, 54: 52-60.
[9] 桑国臣, 陈得勇, 韩艳, 等. 双热扰下节能墙体对室内热环境的动态影响[J]. 太阳能学报, 2017, 38(1): 164-171.
SANG G C, CHEN D Y, HAN Y, et al.Dynamic influence of energy-saving wall on indoor thermal environment under double thermal disturbance[J]. Acta energiae solaris sinica, 2017, 38(1): 164-171.
[10] 杨昭, 郁文红, 张甫仁. 节能建筑复合墙体的非稳态热工性能[J]. 天津大学学报(自然科学与工程技术版), 2004, 37(11): 975-979.
YANG Z, YU W H, ZHANG F R.Unsteady thermal characteristics of wall insulation in low energy consumption building[J]. Journal of Tianjin University(science and technology), 2004, 37(11): 975-979.
[11] 黎登. 间歇模式下建筑围护结构热动态特性及节能潜力研究[D]. 南京: 东南大学, 2011.
LI D.Study on Thermal dynamic characteristics and energy saving potential of building envelope under intermittent mode[D]. Nanjing: Southeast University, 2011.
[12] 赵金玲, 李杰, 党伟康. 热惰性指标对围护结构热稳定性量化作用机制[J]. 哈尔滨工业大学学报, 2018, 50(10): 182-188.
ZHAO J L, LI J, DANG W K.Quantitative mechanism of thermal inertia index on thermal stability of building envelope[J]. Journal of Harbin Institute of Technology, 2018, 50(10): 182-188.
[13] 刘加平. 建筑物理[M]. 4版. 北京: 中国建筑工业出版社, 2009: 1-166.
LIU J P.Architectural physics[M]. 4th ed. Beijing: China Architecture & Building Press, 2009: 1-166.
[14] 马岚. 适应行为节能的建筑热工设计研究[D]. 西安: 西安建筑科技大学, 2020.
MA L.The research on thermal design of building to adapt to behavior energy saving[D]. Xi’an: Xi’an University of Architecture and Technology, 2020.
[15] 刘大龙, 马岚. 多工况运行下围护结构动态热响应的评价方法[J]. 太阳能学报, 2021, 42(3): 469-474.
LIU D L, MA L.Evaluating dynamic thermal response of envelope structures under multi-operating modes of building[J]. Acta energiae solaris sinica, 2021, 42(3): 469-474.
[16] 韦延年. 夏热冬冷地区节能住宅外围护结构保温指标的确定方法[J]. 四川建筑科学研究, 2002, 28(1): 71-73.
WEI Y N.Determination method of thermal insulation index of external envelope of energy-saving residential buildings in hot summer and cold winter areas[J]. Building science research of Sichuan, 2002, 28(1): 71-73.
[17] 黄恒栋, 谯京旭. 建筑热环境与建筑节能相关控制法应用研究在确定围护结构隔热: 节能控制指标中的应用[J]. 重庆建筑大学学报, 2000, 22(4): 20-26.
HUANG H D, QIAO J X.Study on application of interrelated controlling method for thermal environment and energy saving in buildings: application in determining the control indexes for heat insulation and energy saving of enclosure in buildings[J]. Journal of Chongqing Jianzhu University, 2000, 22(4): 20-26.
基金
国家自然科学基金面上项目(51878536); 陕西省重点研发计划项目(2021SF-466,2021ZDLSF05-11)