针对重力式基础海上风力机的防雷保护问题,该文构建一体化电磁暂态模型,基于电磁暂态软件ATP-EMTP研究雷电暂态响应,并分析叶片长度、塔筒高度和桨叶旋转角度等关键因素的影响。仿真结果显示:雷击引起MV级的暂态电压变化,并呈现欠阻尼式振荡衰减,塔基处仍存在kV级的响应电压;桨叶长度和风力机塔筒高度均与雷电暂态响应幅值成正相关;当遭受雷击的叶片与水平面夹角呈90°时,机舱处暂态电压最高。
Abstract
To provide a theoretical basis for the lightning protection of gravity basic offshore wind turbines, an integrated electromagnetic transient model is constructed. Based on the electromagnetic transient software ATP-EMTP, the lightning transient response is studied, and the influence of key factors such as blade length, tower height and blade rotation angle are analyzed. The simulation results show that the transient voltage of MV level is caused by lightning strike, and it exhibits underdamped oscillation attenuation, and the response voltage of kV level still exists at the gravity foundation. Both blade length and wind turbine tower height are positively correlated with lightning transient response amplitude. The transient voltage in the cabin is highest when the angle between the lightning-struck blade and the horizontal plane is 90°.
关键词
海上风力机 /
雷击 /
暂态响应 /
重力式基础 /
一体化模型
Key words
offshore wind turbines /
lightning /
transient response /
gravity foundation /
integrated model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CWEC. Global wind report 2023[R]. 2023
[2] 蔡国伟, 雷宇航, 葛维春, 等. 高寒地区风电机组雷电防护研究综述[J]. 电工技术学报, 2019, 34(22): 4804-4815.
CAI G W, LEI Y H, GE W C, et al.Review of research on lightning protection for wind turbines in alpine areas[J]. Transactions of China Electrotechnical Society, 2019, 34(22): 4804-4815.
[3] 施广全, 张义军, 陈绍东, 等. 风力发电机组防雷技术进展综述[J]. 电网技术, 2019, 43(7): 2477-2487.
SHI G Q, ZHANG Y J, CHEN S D, et al.Review of lightning protection technique progress of wind turbines[J]. Power system technology, 2019, 43(7): 2477-2487.
[4] SHULZHENKO E, YAMAMOTO K, ROCK M.Modeling Lightning Current Distribution in Tower Base of Wind Turbine[C]//2021 35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA), Colombo, Sri Lanka, 2021: 1-8.
[5] SHULZHENKO E, KRAPP M, ROCK M, et al.Investigation of lightning parameters occurring on offshore wind farms[C]//2017 International Symposium on Lightning Protection (XIV SIPDA), Natal, Brazil, 2017: 169-175.
[6] 陈维江, 何天宇, 边凯, 等. 风机叶片雷击损伤及防护研究进展综述[J]. 高电压技术, 2019, 45(9): 2782-2796.
CHEN W J, HE T Y, BIAN K, et al.Review of research progress in lightning damage and protection of wind turbine blades[J]. High voltage engineering, 2019, 45(9): 2782-2796.
[7] MALCOLMN N, AGGARWAL K.Estimation of the failure rate of wind turbine electrical systems exposed to lightning strikes[C]//IEEE Power & Energy Society General Meeting, Denver, USA: IEEE, 2015: 1-6.
[8] PAOLONE M, NAPOLITANO F, BORGHETTI A, et al.Models of Wind-Turbine Main Shaft Bearings for the Development of Specific Lightning Protection Systems[C]//2007 IEEE Lausanne Power Tech, Lausanne, Switzerland, 2007: 783-789.
[9] YANG B, LIU R, CHEN X.Fault diagnosis for a wind turbine generator bearing via sparse representation and shift-invariant K-SVD[J]. IEEE transactions on industrial informatics, 2017, 13(3): 1321-1331.
[10] 王国政, 张黎, 吴昊, 等. 海上风机一体化电磁暂态模型与雷电暂态过电压研究[J]. 电力自动化设备, 2017, 37(11): 32-38.
WANG G Z, ZHANG L, WU H, et al.Electromagnetic transient integration model and transient overvoltage study of offshore wind turbine[J]. Electric power automation equipment, 2017, 37(11): 32-38.
[11] GUTIERREZ J, MORENO P, NAREDO L, et al.Nonuniform transmission tower model for lightning transient studies[J]. IEEE transactions on power delivery, 2004, 19(2): 490-496.
[12] 陶世祺, 张小青, 王耀武, 等. 直接雷击时风电机组的暂态响应分析[J]. 太阳能学报, 2017, 38(10): 2675-2682.
TAO S Q, ZHANG X Q, WANG Y W, et al.Analysis of transient responses on wind turbines during direct lightning strike[J]. Acta energiae solaris sinica, 2017, 38(10): 2675-2682.
[13] MATHERN A, HAAR C, MARX S.Concrete support structures for offshore wind turbines: current status, challenges and future trends[J]. Energies, 2021, 14: 1995.
[14] ALBERTO D, RAFAEL A.Single port equivalent circuit representation of grounding systems based on impedance fitting[J]. IEEE transactions on electromagnetic compatibility, 2019, 61(5): 1683-1685.
[15] 陶世祺. 海上风力发电机组雷电瞬态研究[D]. 北京: 北京交通大学, 2019.
TAO S Q.Study on lightning transient of offshore wind turbines[D]. Beijing: Beijing Jiaotong University, 2019.
基金
基于无线网络全覆盖的海上风电安全生产管理平台建设研究与应用(项目编号:XT-KJ-2021012)